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Introduction
Most differential equations have asymptotic series which are divergent. These

are present in many fields of physics, for example, in many quantum field

theory calculations

Borel-Écalle resummation can be used to resum these divergent series to

uncover information about the underlying physical quantity

This resummation method is abstract giving integral representations of the

functions, but mathematicians/physicists want to find accurate, precise, and

reliable methods to calculate the functions

Divergent series also occur in many physical problems, where here the

integrand is only known as a truncated series

Painlevé Equation PII

y ′′ = 2y 3 + xy + α (1)

Its only movable singularities are poles, it is not solvable in terms of

elementary or special functions, and it corresponds to a nontrivial integrable

polynomial time-dependent hamiltonian

PII is related to the spectrum of the quartic oscillator and also the

distribution of eigenvalues of random matrices in nuclear physics

We are analyzing PII and trying to uncover the properties of the functions

from limited initial information using our new resummation methods

Borel-Écalle Resummation [1]

Borel-Écalle resummation:

Borel transform (formal inverse Laplace transform)

L−1(
k!

xk+1
) = pk (2)

Convergent summation of series in Borel plane

Laplace transform back

Écalle critical time: the variable in which the series diverges exactly

factorially

For PII, the Écalle critical time is t = 2
3x

3
2

After the change of variables x = (3t
2 )2/3; y(x) = x−1(th(t)− α), one

obtains the equation (before Borel transform)
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Padé Approximation

Padé approximation is approximation of a function by a rational function so

that the power series agrees:

R(x) =
a0 + a1x + a2x

2 + ... + amx
m

1 + b1x + b2x2 + ... + bnxn
(4)

Currently used by physicists to better approximate truncated series

Places a dense array of poles behind the nearest singularity of the function

along a given direction, sometimes covering up information about the

singularities of the original function

New results: (1) Asymptotics of Generalized
Continued Fractions

Can use finite generalized continued fractions to approximate our divergent

series:

H(p) = b0 +
β1(p)

1 +
β2(p)

1 + · · ·

(5)

Finite generalized continued fractions are Padé approximants.

Can improve accuracy by adding a terminant to mimic an infinite continued

fraction

For PII in the Borel plane, βi(p)→ −p2

4 . By analyzing how fast these

coefficients converge, we can make a very accurate terminant.

Figure: Plot of the relative error of various approximations, each at 150 terms, along the line of
singularities at p = x + 10−3i .

(2) Conformal Padé

Apply the conformal map f (z) = 2z
1+z2 onto the unit disc, mapping the

singularities on the rays (−∞,−1] and [1,∞) onto the unit circle

Padé places singularities densely on rays behind each nearest singularity, but

each singularity now lies on a distinct ray, as seen in the bottom-right figure.

Clearly identifies singularities of the original function

Conformal Padé and Capacitors [2]

The asymptotic error in the Conformal Padé approx. P for H̃ (as n large) is

|P [n, n](z)− H̃(z)| ∼ |W (1/z)|2n, (6)

where W only depends on the locations of the singularities placed by the

Conformal Padé approximation and H̃ is our function in the conformal disk.

Change variables z → 1/z , placing the function outside of the unit disk

Make cuts between the singularities on the unit circle, making H̃(1/z) single

valued. Think of these cuts as a bendable wire with charge 1C.

Bend the wire so that the capacity is minimal. This position of the wire

denotes the location of the Padé poles for H̃(1/z)!

For this minimal capacitance wire, take the potential V (z). The function W

is given by W (z) = exp[−V (z)].

Figure: Plot of the wire of minimal capacitance and locations of the Padé poles for
g(z) = [(1− z)(i + z)]1/3.

Moving Forward

We wish to calculate the binary rational expansion of PII as this is an

expression of the solution in the physical domain.

We would like to look at the Ablowitz-Segur and Hastings-McLeod solutions

of PII, which are the solutions when α = 0. These are an entirely different

class of solutions.

Figure: The singularities produced by regular Padé approximation vs. the singularities produced by
conformal Padé approximation (both at 200 terms).
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