
Smoothed particle hydrodynamics for hydrodynamic
fluctuations

Michael Heinz

The Ohio State University

Abstract

These notes summarize my results during my JETSCAPE REU project at Wayne State
University during the summer of 2019. I implement the smoothed particle hydrodynamics
(SPH) method for solving relativistic hydrodynamic equations. This project provides a useful
tool to study the hydrodynamic medium response to small local fluctuations in relativistic
heavy-ion collisions. This open source code package is written in C++ with C++11 standard
and has unit tests for each individual components.

1 The project

The general idea of this project was looking at modeling the evolution of hydrodynamic fluctuations. The
first two weeks included a lot of reading papers on hydrodynamic fluctuations and understanding the kinetic
equations that were derived in these papers. I learned a lot about four vectors and tensors, for example how
gµν changes based on coordinates chosen and how this affects equations. In these papers [1, 2], the equations
that we wanted to solve for the two-point correlation functions were partial differential equations. Partial
differential equations can be solved numerically through a grid-method, but Professor Chun Shen wanted to
test the smoothed particle hydrodynamics (SPH) method (commonly used in industry and astrophysics) to
solving partial differential equations due to it’s potential to be easily generalizable to different situations since
SPH is a mesh-free method to solving the PDE. Thus, the main focus of my project became understanding
and implementing SPH.

Over the next 8 weeks, I started from the ground up, programming an implementation of SPH in C++
with C++ 11 standard. This included learning a lot about C++ structures and how to manipulate them. I
had to make a heirarchy of classes for greater convenience, such as a class for a single particle which held
data about the particle and a class for the driver that controls all the particles. I also created a few base
classes, such as a class for four vectors which overloaded operators for easier use as well as a few classes
to implement a mesh that would help ease computation in finding neighboring particles for each particle.
Additionally, I learned to use cmake to compile all of these classes together with the main program, allowing
the code to be separated into many smaller parts to make it more readable and understandable.

As the code began to develop, I also learned from Prof. Shen many of the key strategies to developing
“good” code, that is code that was clear, concise when possible, and well-documented. I also learned
about unit tests, which check that basic methods within each class work as expected, allowing the user
to make sure everything is running as expected still even after perhaps making big changes to code for
computational efficiency. Finally, I learned about using git to commit changes to a repository such that there
was a constant log that kept track of your changes to the code and would allow us to go back to an older
version of the code if necessary. All of the code and unit tests are committed to the following repository
which is public: https://bitbucket.org/wayne_state_nuclear_theory/sph_solver/src/master/. It
was extremely rewarding to be able to write such code from the ground up with clear documentation that
would hopefully make it easy for someone else to pick up when my time at the REU was finished.

On the other hand, I was also constantly working outside of the code to understand the methodology and
implementation of SPH better. This included reading many papers [4, 5, 7–9] by some of the “godfathers”
of SPH, including Professor Joseph Monaghan from Monash University. Through many discussions with
Prof. Shen, we learned how to deal with various operators and covariant derivatives to write our equations in
a form that would be solved correctly using the SPH method. A lot of what we found is discussed in the
following sections about test cases I ran for the C++ code which I wrote.

In this report, we take c = ~ = 1.

1

https://bitbucket.org/wayne_state_nuclear_theory/sph_solver/src/master/

2 SPH basics

The basic idea of SPH is to discretize your problem domain into particles which carry mass mi, density ρi,
velocity vi, and whichever other field values are necessary to a problem. These particles move according to
their velocities which match the flow. These particles are essentially smoothed over a finite volume using a
smoothing kernel W , and continuous field values are calculated by a weighted average of the field values of
the particles. One advantage of this method is that spatial gradients don’t have to be calculated using a
finite difference method, but rather are calculated using the known gradient of the smoothing kernel W . This
turns partial differential equations into a set of coupled ordinary differential equations, which is much easier
to solve [5, 8].

2.1 Approximating a continuous field

The SPH approximations start from the identity

f(x) =

∫
V

f(x′)δ(x− x′)dx′, (2.1)

where f is any function defined on V ⊆ R3, δ(x) is the Dirac delta function, and x′ is a dummy variable
ranging over V [5, 7]. The delta function can be generalized to a smoothing kernel W with a smoothing
length h, which has the following two properties [5, 7, 8]:∫

V

W (x, h)dx′ = 1 (2.2)

and
lim
h→0

W (x, h) = δ(x). (2.3)

If this smoothing kernel W is even, one can show that [5, 7]

f(x) =

∫
V

f(x′)W (x− x′, h)dx′ +O(h2). (2.4)

To discretize the problem domain, one defines a series of particles in the problem domain with (potentially
varying) mass mj = ρ(xj)dxj . This replaces the infinitesimal volume dxj by ∆Vj = mj/ρj , leading to the
approximation

f(x) ≈
∑
j

mj

ρj
fj W (x− xj , h), (2.5)

where xj , mj , ρj = ρ(xj), and fj = f(xj) are the position, mass, density, and value of function f of particle
j respectively, and j runs over all particles [5, 7, 8]. We can apply this approximation at xi, the position of
particle i, to get

fi ≈
∑
j

mj

ρj
fjWij , (2.6)

where Wij = W (xi − xj , h). One of the most important times this approximation is used is when updating
the densities of the particles [5, 7, 8], as we have

ρi ≈
∑
j

mjWij . (2.7)

In our case, we took the smoothing kernel W to be the Gaussian,

W (x, h) =

{
1

(
√

2πh)d
e−|x|

2/(2h2) |x| ≤ 5h

0 |x| > 5h,
(2.8)

where d = 1, 2, or 3 is the dimension of the problem. We cut the Gaussian off at 5h away from the center to
increase numerical efficiency. This eases computation as if |x− xj | > 5h, particle j doesn’t contribute to the
sum in equation (2.5).

2

2.2 Approximating spatial derivatives

One can similarly get an approximation for the spatial derivative [5, 8],

∇f(x) ≈
∑
j

mj

ρj
fj ∇W (x− xj , h), (2.9)

as the gradient with respect to x passes through to the smoothing kernel W . Applied this approximation to
particle i at position xi, we get

∇ifi ≈
∑
j

mj

ρj
fj∇iWij , (2.10)

where

∇iWij =
∂Wij

∂xi
x̂+

∂Wij

∂yi
ŷ +

∂Wij

∂zi
ẑ. (2.11)

However, one can construct other estimators for the spatial derivative that are preferred for various
reasons. For example, since ∇1 = 0, one can use

∇f(x) = ∇f(x)− f(x)∇1 (2.12)

to get the approximation

∇f(x) ≈
∑
j

mj

ρj
fj∇W (x− xj , h)− f(x)

∑
j

mj

ρj
∇W (x− xj , h) (2.13)

=
∑ mj

ρj
(fj − f(x))∇W (x− xj , h), (2.14)

which has the advantage that it vanishes identically for a constant function f [5].
Similarly, the following two identities are often used to improve the gradient approximation,

∇f =
1

ρ

[
∇(fρ)− f∇ρ

]
(2.15)

∇f = ρ
[
∇
(f
ρ

)
+

f

ρ2
∇ρ
]
. (2.16)

From these, we get the following approximations,

∇f(x) ≈ 1

ρ(x)

∑
mj(fj − f(x))∇W (x− xj , h) (2.17)

∇f(x) ≈ ρ(x)
∑

mj

(
fj
ρ2
j

+
f(x)

ρ(x)2

)
∇W (x− xj , h). (2.18)

Again, the first identically vanishes for constant functions while the second is pairwise symmetric and is
commonly used to ensure conservation of momentum when used with the pressure gradient [5,7, 8]. From
here on out, I will drop the approximation and write everything as equalities.

3 Relaxation equation test

The first equation of motion [10] that we are analyzing has the general form

uµ∂µφa = −Γ(φa − φeq). (3.1)

Here, Γ is a constant matrix, and φa is a vector of field values, which have an equilibrium value of φeq. For
the SPH approximation, we write the equation as follows:

γ
dφa
dt

= −Γ(φa − φeq), (3.2)

3

where γ = ut and d/dt = ∂t + vi∂i where i runs over x, y, and z. The reason for this is that the SPH method
requires the equations to be written in terms of the full Lagrangian time derivative and spacial derivatives.
As we will see, these equations will determine the change in the field value of a certain particle, and the
ui∂iφa terms are dealt with by the movement of the particles. Then, for particle i, we have the equation

γ
dφai
dt

= −Γ(φai − φeq(xi)). (3.3)

Until otherwise noted, φa is a unit-less scalar field (a vector with only one component), and hence we
have that Γ is simply a constant in units fm−1. Also, we restricted the problem to one dimension, having all
particles on the x-axis with velocities only in the x-direction. Here, we are using the Euler’s forward time
difference to evolve the given ODEs. We discuss higher order numerical schemes in section 7.

3.1 Stationary fluid test

In our first test, we let the fluid be at rest and stay at rest, that is ux = uy = uz = 0, so γ = ut = 1. Hence,
the equation of motion becomes

γ∂tφa = −Γ(φa − φeq), (3.4)

which has the analytic solution
φa(t) = φeq + (φa,0 − φeq)e−Γt/γ , (3.5)

since γ is constant. We initialized 121 particles of mass mi = 1 GeV uniformly in a box of width 6 fm, so
ρ = 20 GeV/fm. Each particle is initialized to have φai = 2 and h = 0.1 fm. We also let φeq = 0 and Γ = 1
fm−1.

Our numerical solution matched the expected analytic solution in the center of the box. However, there is
a noticeable “bunny ear” edge effect when one calculates the field φa at the edge, as seen in figure 1. This is
due to a drop in density at the edge. We have

ρi =
∑

mjWij (3.6)

where Wij = W (xi − xj , h). At the edge, there are fewer neighboring particles (that is, particles within the
support of W), so although mass is distributed uniformly, there are less significant terms in the sum when at
the edge, leading to a drop-off in the density. This propagates through to when calculating φa near the edge.
We have

φa(x) =
∑ mj

ρj
φajW (x− xj , h). (3.7)

Although each particle is initialized to have φai = 2, at the very edge one suffers again from not having many
neighboring particles, so the value of φa is lower. However, as one moves further in from the edge, the field
value actually overshoots, becoming larger than 2 before finally settling back to 2 around 5h from the edge.
This overshooting is because the particles near the edge have a lower value of ρ, leading them to contribute
more in the sum due to the 1/ρj factor. One might ask why this isn’t offset by the lower field values near the
edge, and that is because the actual value of φai for particles near the edge isn’t any lower: at all times, it is
the same as for the particles in the middle since the evolution of φai has no interaction with other particles
with this equation of motion as there are no spatial gradients. For a discussion of a way to deal with the
“bunny ear” edge effect, see section 5.

3.2 Test with constant velocity

We did a second test where the fluid has a constant velocity in the x-direction, that is ux = const and
uy = uz = 0. Thus, the equation becomes

γ∂tφa + ux∂xφa = −Γ(φa − φeq). (3.8)

Here, the flux term ux∂xφa = 0 since the initial field is constant and the fluid flows with constant velocity.
This still has the analytic solution

φa(t) = φeq + (φa,0 − φeq)e−Γt/γ , (3.9)

4

Figure 1: Plots of the SPH vs. exact solution to the relaxation equation with a stationary fluid at times
t = 0 fm and t = 1 fm.

since γ is constant as the velocity is constant, so we can see that indeed ux∂xφa = 0. When the particles left
the box on the right, we imposed periodic boundary conditions, resetting their position to re-enter on the left.
Here, we let vx =

√
3/2, so we have γ = 2, changing the decay rate in the analytic solution. As expected, we

saw a factor of two decrease in the decay rate in the numerical solution.

4 Investigating size of h for Gaussian smoothing function W

A large part of the smoothed particle hydrodynamics is the smoothing function W . What this function does
is that it takes the discretization of the fluid into finitely many particles and smooths it out to reproduce
the properties of the field. This smoothing function has a given smoothing length h, and it is important to
investigate this h thoroughly. To do this, we initialized a constant field in a one dimensional box of size 6 fm.
We uniformly distributed 121 particles in the box, each with mi = 1 GeV and φai = 2, so ρ = 20 GeV/fm.
We then varied h and recorded the initial values of φa(x) (up to 6 significant digits) for x values from x = −3
to x = 3 with step size dx = 0.01 Notice, the spacing between the particles is

∆x =
6 fm

120
= 0.05 fm.

We began with h = 0.1 fm, so that
h

∆x
= 2, (4.1)

and the field value was constant, φa(x) = 2 (up to 6 significant digits). This means that the smoothing
length h is large enough for the spacing between particles, smoothing out the particle discretization enough to
reproduce the constant field. Increasing the size of h won’t do us any good anymore, as it will only increase
the distance that the “bunny ear” edge effect that we have seen previously reaches.

We then decreased the value of h, trying to find a point at which the smoothing length became too small
and one could start to see the discretization of the continuous field. We found that at h = 0.045 fm, the field
value was still constant. However, at h = 0.0425 fm the field was not constant anymore, having small dips in
φa(x) at the x-values between the particles, hitting φa(x) ≈ 2− 10−5 as seen in figure 2. Thus, we found

5

Figure 2: Plots of the initialized continuous constant field φa(x) = 2 for 121 particles in a box of size 6 fm
(∆x = 0.05 fm) at two different values of h: h = 0.045 fm and h = 0.0425 fm.

that to correctly represent a constant field in one dimension, one should have

h

∆x
≥ 0.045

0.05
= 0.9, (4.2)

as then the smoothing length is large enough for the distance between each particle. On the other hand, if

h

∆x
≤ 0.0425

0.05
= 0.85, (4.3)

the smoothing length is not large enough as one can see small variation in the value of φa(x).
To make sure that it was actually the ratio of h to ∆x which was important, we ran the test again, this

time initializing 61 particles in the box of width 6 fm, so that ∆x = 0.1 fm. Once again, we found that for
h/∆x ≥ 0.9, the field was constant, while for h/∆x ≤ 0.85, one could see some variation.

5 Constant shockwave test

Next, we did a shockwave test. This tests the equation

γ
dφa
dt

= uµ∂µφa = 0 (5.1)

with the fluid moving at a constant velocity. We initialized 500 particles uniformly between x = −4 fm
and x = −3 fm with mi = 1 GeV and h = 0.05 fm, so ρ = 500 GeV/fm. The fluid had a constant velocity
vx =

√
3/2, so γ = 2. The particles were initialized with φai = 2. Here, we let Γ = 0 to get rid of the source

term. As we have seen before, the initial shape of φa had the“bunny ear” effect at the edges. However, the
bunny ear shape stayed exact as the shockwave moved, as the values of φai for each particle didn’t change
since dφa

dt = 0, as seen in figure 3. This seems to be an advantage to the usual grid numerical solutions of the
shockwave, as they have to deal with a gradient of the steep discontinuity due to the flux term.

One attempt to fix the “bunny ear” issue is to use a different method for computing the density [7]:

ρi =

∑
mjWij∑ mj

ρj
Wij

. (5.2)

6

Figure 3: Plots of the SPH vs. exact solution of φa(x) for the shockwave equation at times t = 0 and t = 2.
Also plotted is ρ1(x)/500 solved according to equation (3.6). Notice the “bunny ear” edge effect in the SPH
solution for φa(x).

This method has a normalization factor in the denominator. When making a fluid with constant density and
evenly spaced particles, this avoids the drop-off in density along the edge, which gets rid of the“bunny ear”
effect. However, it also creates a non-zero fantasy density when you compute the density where there are no
particles, which is undesirable (see figure 4).

6 Neighboring particles list

Up until this point, to find the neighboring particles for a single particle i, we loop over all particles j and see
if they are within a certain distance to particle i. To do this for each particle i is O(N2) time. We call this
method the“all-pair search”. This becomes really costly when we get to a large number of particles. Hence,
we have implemented another method to finding the neighboring particles. This method utilizes a mesh that
is placed overtop the problem domain with spacing κh, which is the radius of the support of the smoothing
function W (it is the maximum distance between neighboring particles). First, we loop through the list of
particles and add it to the corresponding cell which it is in (the cell has a list of particles belonging to it,
which we call the linked list). Then, for each particle i, we simply have to loop over particles j in its cell and
neighboring cells to find its neighboring particles list. This reduces the runtime to O(Nlog(N)) as h becomes
small (so that the number of neighboring particles is small compared to the total number of particles). We
call this method the “linked-list search” [7].

To demonstrate this, we ran a test in 2-dimensions. We initialize 1012 = 10201 particles distributed evenly
in a 10 fm×10 fm box. Each particle is initialized with φai . We run with a zero source term, so that their φa
values don’t change. Each particle is at rest, and thus should have the same number of neighboring particles
at each time step. When using the linked-list search, the program ran 300 time steps in 74.65 seconds. When
using the all-pair search, the program ran 300 time steps in 640.01 seconds. Here, the linked-list method was
faster by a factor of 8.

Of course, this factor depends on the number of total particles, as well as the number of particles that
are contained in each of the cells in the mesh (that is, the number of neighboring particles each particle
should have). For example, if all the particles are contained in two cells of the mesh (so that each particle is
neighbors with almost every other particle), the linked-list method will give no significant improvement.

7

Figure 4: Plots of the SPH vs. exact solution of φa(x) for the shockwave equation at times t = 0 and t = 2.
Also plotted is ρ2(x)/500 solved according to equation (5.2). Notice that this solves the “bunny ear” edge
effect in the SPH solution for φa(x), but also introduces a fantasy density where there are no particles.

7 Delta function diffusion test

The next test we ran was a delta function diffusion test. That is, we tested the equation

γ
dφa
dt

= uµ∂µφa = D∇2φa (7.1)

We ran it in both one dimension and two dimensions. We initialized φa to only be non-zero at the particle
placed at the origin, to mimic a delta function. Of course, due to the smoothing function, the represented
continuous φa field was a Gaussian,

φa(x) =
φa0

(
√

2πh)dρ
e−|x|

2/(2h2), (7.2)

where ρ is the density of the initialized particles, d is the dimension of the problem, and φa0 is the value of
φa for the particle at the origin. We let φa0 = 10. This equation can also be solved exactly for this initial
Gaussian.

We used three different SPH schemes to calculate the diffusion term. The three schemes were as follows:

D∇2
iφai = D

∑ mj

ρj
φaj∇2

iWij , (7.3)

D∇2φai = D
∑ mj

ρj
(φaj − φai)∇2

iWij , (7.4)

and

D∇2φai = Dρi
∑

mj(
φaj
ρ2
j

+
φai
ρ2
i

)∇2
iWij , (7.5)

where

∇2
iWij =

∂2Wij

∂x2
i

+
∂2Wij

∂y2
i

+
∂2Wij

∂z2
i

(7.6)

in three dimensions, and was adjusted accordingly in one and two dimensions. We will refer to these three
schemes as the basic, antisymmetrized, and symmetrized schemes respectively.

8

Figure 5: Plots of the SPH vs. exact solution of φa(x) for the diffusion equation in one dimension with
diffusion constant D = 1 fm for an initialized Gaussian at small t for various values of ∆t. Here, we used the
basic SPH method for calculating the diffusion described in equation (7.3).

9

7.1 One dimension

In one dimension, we placed 121 particles with mass mi = 1 GeV in a 6 fm width box, so that ∆x = 0.05 fm
and ρ = 20 GeV/fm. We also set h = 0.1 fm and D = 1 fm. We then varied ∆t.

First, we used the basic scheme for calculating diffusion. At ∆t = 0.001 fm, we found that in the first 100
time steps the SPH approximation trailed the exact solution, the SPH peak being larger than the exact peak
as they both diffused. After around 0.2 fm, the SPH approximation caught up and was indistinguishable from
the exact solution until the diffusion reached the edge of the box. At that point, the SPH approximation was
actually lower than the exact solution, the exact solution rising at the edges as φa diffused, while the SPH
solution trailed behind.

At ∆t = 0.01 fm, the SPH solution again trailed the exact solution, as seen in figure 5. However, it
described the exact solution much better than at ∆t = 0.001 fm, matching to the exact solution pretty closely
by 0.1 fm. This is actually most likely because the larger time step made up for an under-approximation in
the Laplacian seen in the first test, keeping up with exact solution better. Again, once the diffusion reached
the edge, the SPH solution trailed behind. We ran this one for longer, as there were fewer time steps, and
after 2 fm, there was a distinct separation everywhere between the SPH and exact solution, the SPH solution
having a lower value of φa everywhere as the edge effect propagated inwards.

At ∆t = 0.015 fm, the SPH solution actually slightly leads the exact solution at the beginning, but
matched the closest of any of the approximations so far, as seen in 5. This is again due to the larger time
step. At longer times, the solutions match very closely.

At ∆t = 0.02 fm, the SPH solution leads the exact solution by quite a bit. Here, the first time step is
so big, that the middle of the Gaussian actually drops down further than the sides, making a small valley
in the middle (see figure 5). This is then corrected in the next time step, although the SPH solution looks
less Gaussian due to this oscillation. However, the oscillation steadies out by 0.1-0.15 fm, and at long times
matches the other solutions.

At ∆t = 0.05 fm, the overestimation in the first time step of the SPH solution actually makes the central
φa go negative, leading to large oscillations in the next time steps which only become amplified making the
solution unstable, as seen in figure 5.

These same traits can be seen with all three schemes for calculating the diffusion term. The solutions
actually seem to match exactly in the first 0.3 fm. However, at long times, the antisymmetrized method
begins to oscillate at the edges, leading to a solution that then blows up, as seen in figure 6. The basic and
symmetrized schemes match at long times, and both end up having φa fields that a lower than the exact
solution due to propagating edge effects.

7.1.1 Testing different differential schemes

Up to this point, we had always been using Euler’s forward difference method to solve the differential equation.
However, we wanted to test if we could make the step-size larger if we used a differential equation solver that
had a higher order error in ∆t. We tested both Heun’s method (a generalized second-order Runge Kutta
method) and RK4, the fourth-order Runge Kutta method. To test, we only used the basic SPH scheme in
one dimension.

Both Heun’s method and RK4 still lead to oscillations at ∆t = 0.05 fm, so they did not lead to significant
improvements in the step-size ∆t we could use. Hence, it seems that once the solution is unstable, it might
be unstable no matter which solver one uses. At ∆t = 0.02 fm, both Heun’s method and RK4 did match
the exact solution much better than Euler’s method, as they avoided the valley in the center caused by the
larger step-size since Heun’s method and RK4 break up the time step into smaller time steps to get better
corrections. Heuns’s method and RK4 actually trail the exact solution at the beginning, contrary to Euler’s
method. Out of the two better differential methods, RK4 matched the solution better, as expected.

7.1.2 Changing ∆x

Next, we initialized 61 particles with mass mi = 1 GeV in the 6 fm width box instead of 121 particles, so
that ∆x = 0.1 fm and ρ = 10 GeV/fm. We wanted to see if just changing ∆x would change the value of
∆tmax at which the solution begins to be unstable. However, it did not change (significantly). The solution

10

Figure 6: Plot of the SPH vs. exact solution of φa(x) for the diffusion equation in one dimension with
diffusion constant D = 1 fm for an initialized Gaussian at t = 0.84 fm for ∆t = 0.02 fm. Here, we used the
antisymmetrized SPH method for calculating the diffusion described in equation (7.4).

was still stable at ∆t = 0.02 fm with the small oscillations at the beginning as before, and the solution was
unstable at ∆t = 0.05 fm. Thus, we can conclude that ∆x and ∆tmax are independent in the SPH method.

7.2 Two dimensions

In two dimensions, we placed 3721 particles with mass mi = 1 GeV in a 6 fm×6 fm box, so that ∆x = ∆y = 0.1
fm and ρ = 102 = 100 GeV/fm2. We again set h = 0.1 fm, and we tested both D = 1 fm and D = 0.1 fm.
We also varied ∆t for both values of D. During the two dimensional tests, we exclusively used RK4 to solve
the differential equation. In two dimensions, the simulation takes much longer to run, so we only ran at most
100 times steps.

We started with D = 1 fm and ∆t = 0.01 fm. All three diffusion schemes solved the differential equation
(seemingly) exactly the same first 100 time steps. They all trail the exact solution mirroring the behavior
we saw in one dimension. When taking ∆t = 0.02 fm, the SPH solutions still trail the exact solution at the
beginning (as we saw in one dimension when using RK4), but the three SPH solutions still match exactly.
Here, we could run to 2 fm using 200 time steps, and, as in one dimension, the antisymmetrized diffusion
scheme starts oscillating at the edge once the diffusion reaches the edge, leading to the solution blowing up.
This is not scene in either the basic or symmetrized diffusion schemes. Finally, when taking ∆t = 0.05 fm,
all three SPH solutions again have the large oscillations due to the large time step, and we see an unstable
solution just as we did in one dimension.

We then took D = 0.1 fm and varied ∆t to see if the maximum allowed ∆t would change, and it did. We
again started with ∆t = 0.01 fm, where all three diffusion schemes matched exactly and trailed the exact
solution, as we have seen before. This same behavior was seen with ∆t = 0.02, 0.05, and 0.1 fm, and the
solutions actually seemed to match exactly to those at ∆t = 0.01 fm. At ∆t = 0.2 fm, the solution was still
stable and still trailed the exact solution, but it differed from the solutions of the previous four values of ∆t.
At ∆t = 0.333 fm, the solution had small oscillations at the beginning, but they steadied out over time as the
SPH solution began to match the exact solution. Finally, at ∆t = 0.5 fm, we saw the unstable solution, as

11

Figure 7: Plots of the SPH vs. exact solution of φa(x) for the diffusion equation in two dimensions with
diffusion constant D = 0.1 fm for an initialized Gaussian at small t for two values of ∆t. Here, we used the
basic SPH method for calculating the diffusion described in equation (7.3).

seen in figure 7. The ∆tmax is a factor of 10 larger from when D = 1 fm, so we conclude that

∆tmax ∼
1

D
. (7.7)

8 Causal diffusion equation

The next test we ran was for the relativistic causal diffusion equation with a general flow velocity uµ. The
relativistic causal diffusion equation can be written in two first order equations as follows:

∂µj
µ = ∂µ(nuµ + qµ) = 0 (8.1a)

γ
dqµ

dt
= uµ∂µq

µ = −1

τ
(qµ −D∇µn). (8.1b)

Here, ∇µ = ∆µν∂ν = (gµν − uµuν)∂ν = ∂µ − uµγ d
dt . We have the following metric:

gµν =


1
−1

−1
−1

 , (8.2)

so ∂t = ∂t and ∂i = −∂i. Now, since we want to write everything in terms of only full Lagrangian time
derivatives and spatial partial derivatives, we use the following two identities to rewrite the above equations:

∂t = ∂t =
d

dt
− vi∂i (8.3a)

∇i = ∂i − uµγ d
dt

= −∂i − uµγ
d

dt
(8.3b)

∇t = ∂t − γ2 d

dt
=

d

dt
− vi∂i − γ2 d

dt
= −(γ2 − 1)

d

dt
− vi∂i. (8.3c)

12

From equation (8.1a), we get

γ
d

dt
n+

d

dt
qt = −nθ + vi∂iq

t − ∂iqi. (8.4)

From equation (8.1b) with µ = t, we get

D

τ
(γ2 − 1)

d

dt
n+ γ

d

dt
qt = −D

τ
vi∂in−

1

τ
qt. (8.5)

From equation (8.1b) with µ = i, we get

γDui

τ

d

dt
n+ γ

d

dt
qi = −D

τ
∂in−

1

τ
qi. (8.6)

We can write this as the following matrix equation:
γ 1 0

D
τ (γ2 − 1) γ 0

γDui

τ 0 γ




d
dtn

d
dtq

t

d
dtq

i

 =


−θ vi∂i −∂i

−Dτ v
i∂i − 1

τ 0

−Dτ ∂i 0 − 1
τ



n

qt

qi

 . (8.7)

The matrix on the left can then be inverted, leaving the five desired differential equations with full Lagrangian
time derivatives.

9 Acknowledgments

First, I would like to thank JETSCAPE REU for funding this research project under the NSF grant ACI-
1550300. I would also like to Prof. Chun Shen at Wayne State University for all his guidance throughout the
project, as well as the entire Wayne State University physics department for their hospitality. Overall, the
experience I have had over the last 10 weeks has been amazing. I learned a lot about computational research
in physics and about the area of nuclear physics in general, and I hope that my contribution to the research
project will help its development in the future as Prof. Shen continues to explore SPH as a way to solve the
equations for these hydrodynamic fluctuations.

References

[1] Akamatsu,Y., Mazeliauskas, A., & Teaney, D.,: 2017, arXiv:1705.08199v1 [nucl-th]

[2] An, X., Başar, G., Stephanov, M., & Yee, H.: 2019, arXiv:1902.09517v2 [hep-th]

[3] Aziz, M. A. & Gavin, S.: 2004, arXiv:nucl-th/0404058v1

[4] Chow, E. & Monaghan, J. J.: 1997, J. Comp. Phys., 134, 296

[5] Cossins, P.: 2010, arXiv:1007.1245v2 [astro-ph.IM]

[6] Denicol, G. S, Gale, C., Jeon, S., Monnai, A., Schenke, B., & Shen, C.: 2018, arXiv:1804.10557v1 [nucl-th]

[7] Liu, G.R. & Liu, M. B.: 2003, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World
Scientific

[8] Monaghan, J. J.: 1992, ARA&A 30, 543

[9] Price. D.J.: 2010, arXiv:1012.1885v1 [astro-ph.IM]

[10] Stephanov, M. & Yin, Y.: 2017, arXiv:1712.10305v1 [nucl-th]

13

	The project
	SPH basics
	Approximating a continuous field
	Approximating spatial derivatives

	Relaxation equation test
	Stationary fluid test
	Test with constant velocity

	Investigating size of h for Gaussian smoothing function W
	Constant shockwave test
	Neighboring particles list
	Delta function diffusion test
	One dimension
	Testing different differential schemes
	Changing x

	Two dimensions

	Causal diffusion equation
	Acknowledgments

