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Abstract

Microseconds after the Big Bang, the universe existed in a state called the quark-
gluon plasma (QGP). To experimentally study its properties, the QGP is recreated
in high-energy nuclear collisions at the LHC, and the particles produced from the
QGP are reconstructed from their energy deposition in the ATLAS calorimeter. This
requires both classifying the particles and calibrating their deposited energy. The
objective of this project is to improve the reconstruction by using machine learning
techniques, where the energy depositions of clusters of cells, formed by ATLAS topo-
clustering methods, are treated as three-dimensional images when inputted to neural
networks. This approach significantly improves the calibration of deposited energies
when cross-validating while training, and models trained on idealized data predict
the calibrated energies of particles in more complex data sets well. Additionally,
implementation of a data generator using uproot allows the program to load input
data into memory as needed while training or predicting, significantly reducing the
amount of memory used. The data generator also allows for use of multiprocessing
to speed up training and evaluating. This work illustrates that using machine learn-
ing methods for both classification and calibration has the potential to significantly
improve particle reconstruction.

1 Introduction

One of the main goals of high-energy nuclear physics is to understand properties of the quark-gluon
plasma (QGP), the state of matter in which the universe existed microseconds after the Big Bang.
To experimentally study its properties, the QGP is recreated in high-energy nuclear collisions at
the Large Hadron Collider (LHC) at CERN. In these collisions, the QGP produces thousands of
particles, whose energy deposition is recorded in the ATLAS calorimeter system. The ATLAS
calorimeter system is discretized, with six layers of cells which record energy deposition using
different methods [1]. The first three layers of cells comprise the LAr Electromagnetic Barrel (EMB),
which mostly reads the energy deposition from charged particles produced by electromagnetic
showers, while last three layers of cells make up the tile calorimeter, where particles produced by
hadronic showers deposit most of their energy. The energy deposition in the calorimeter is used to
try to reconstruct the original particles produced in the collision.

The first step in this particle reconstruction is clustering the cells in the calorimeter together
using the ATLAS topo-clustering method, where each cluster is supposed to represent an original
particle [1]. However, due to electronic noise and other sources of fluctuations in energy such as
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energy deposited from previous events or other collisions in the same event, the clustering strategy
uses energy cutoffs in order to extract the significant signal from that noise background. As a result,
some of the energy deposited by the particle can be lost in cells that are not clustered due to the
clustering strategy. Additionally, energy can be lost in inactive material near the cluster and, for
hadronic showers, there is a loss of signal in the deposited energy due to the character of the ATLAS
calorimeter. Thus, the energy of the topo-cluster must be calibrated to represent the true energy of
the particle which deposited the energy in the calorimeter. Also, since the calibration depends on if
the shower is electromagnetic or hadronic, it is essential to classify the cluster correctly [2]. In this
project, the goal is to reconstruct the particles produced from showers of both charged (7%) and
neutral (%) pions, which are the most common particles produced by high-energy collisions. The
charged pions produce electromagnetic showers, while the neutral pions produce hadronic showers.

The classification method and “local cell weighting” (LCW) energy calibration method currently
used in ATLAS use traditional binning techniques based on a small number of hand-picked calorime-
ter observables [2]. The objective of this project is to improve the reconstruction of particles by
using machine learning techniques, where the energy depositions of clusters of cells are treated as
three-dimensional images when fed into neural networks.

This report is organized as follows. The reconstruction of particles using machine learning and
how it compares to previous reconstruction techniques is described in Section 2. Section 3 discusses
the implementation of a data generator which uses uproot and its benefits.

2 Reconstruction of Particles Using Machine Learning

2.1 Background

The first step to reconstructing particles is to form topo-clusters from cells in the calorimeter [1].
The topo-clustering algorithm starts proto-clusters with cells which have significant signals, called
“seed cells”, whose signal exceeds a seeding threshold S. After this, if a neighboring cell has a signal
larger than the growth threshold N, the cell is included in the proto-cluster and its neighboring
cells are also considered. Here, a neighboring cell means either an adjacent cell in the same layer
or a cell in a different layer which overlaps with the current cell. As the proto-clusters grow, two
proto-clusters are combined if they both include a cell whose signal is larger than N. Once the
proto-cluster has no more neighboring cells whose signal is larger than IV, the proto-cluster stops
growing. However, neighboring cells who pass a principal threshold P which is smaller than N are
still included in the cluster. If these proto-clusters have two or more local maxima, they are split
in the three spatial directions, and cells which are shared between two clusters have their signal
split between them. After the splitting is complete, the algorithm is finished, and the remaining
clusters are called the topo-clusters.

Once the topo-clusters are formed, the total cluster energy is calculated, and their kinematic
properties coordinates are calculated be weighted averages based on the cells energy, weighting
cells with a higher signal more [1]. In the classification and energy calibration methods used so far,
the clusters are then binned based on a hand-picked subset of these variables, which is different
for classification and energy calibration. The classification and energy calibration for each bin is
determined from simulated training data, where the true energy, deposited energy, and classification
of each particle are known. The objective of this project is to improve the classification and energy
calibration of these clusters by training neural networks on the training data using image recognition
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Figure 1: A sketch of the DenseNet model used for both classification and energy calibration by regression

[2].
techniques on the energy depositions which are treated as three-dimensional images.

2.2 ATLAS Calorimeter Images

For this study, only the central portion of the detector is considered [2]. In this portion of the
detector, the first sampling layer of the EMB calorimeter (EMB1) has a 128-by-4 grid of cells. On
the other hand, the second sampling layer (EMB2) is a 16-by-16 grid, and the third sampling layer
is a 8-by-16 grid. Finally, the three tile layers, TileO, Tilel, and Tile2, are 4-by-4, 4-by-4, and
2-by-4 grids, respectively, in this portion of the detector.

2.3 Model

The neural network model used for both classification and energy calibration in this project is a
DenseNet, as seen in Figure 1. The Dense Block for the DenseNet model is described in Ref. [3].
For both tasks, the energy depositions of the six calorimeter layers are fed into the neural network
as three inputs: a one-channel image of the EMB1 layer at full resolution, a two-channel image of
the EMB2 and EMB3 layers, where the EMB3 layer is upscaled to the EMB2 resolution, and a
three-channel of all the tile layers, where the Tile2 layer is upscaled to the resolution of the Tile0
and Tilel layers.
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The output and loss function of the neural network differ for classification and energy calibration
by regression. For classification, the model is trained using categorical crossentropy loss and outputs
an array of two elements which describe the probability that the cluster comes from a charged pion
or a neutral pion. The cluster is identified as coming from a neutral pion shower if its probability
to come from one is larger than the classification cutoff p, where the default value for p is 0.5.
For energy calibration by regression, the model is trained using mean-squared error and outputs
a single value which represents the calibrated energy of the cluster, usually scaled for purposes of
normalization.

2.4 Results
2.4.1 Classifying

Training of the classifier was done using cross-fold validation, which is when the trained network is
tested on data it has not seen after each epoch to prevent overfitting. When using a classification
cutoff p = 0.5, the classifier model has 94.57% accuracy when predicting the type of pion for the
validation data. However, it only correctly classified 88.47% of the clusters from 70 showers, while
it correctly classified 96.25% of the clusters from charged pion showers. This is most likely because
most of the training data came from charged pion showers, so the model was penalized more if it
was incorrectly classifying charged pions.

On the other hand, the classifier model has an accuracy of 94.06% on the validation data when
the classification cutoff p is taken to be 0.3. Although the overall accuracy is lower, the model
now correctly classifies 93.70% of clusters from 7° showers and 94.17% of clusters from 7+ showers.
Going forward, investigation into which value of the classification cutoff p is best will be valuable.

2.4.2 Regression for Energy Calibration

Training of the regression model for energy calibration was done separately for neutral pions and
charge pions as their energy is deposited in different ways in the calorimeter. The results of the
cross-fold validation while training on the original training sample as well as inference on different
collision samples compared to previous methods for energy calibration are shown in Figure 2. The
cross-validation for the training sample (solid red) shows significant improvement in calculating the
calibrated energy compared to the original cluster energy (dashed red) and the LCW calibrated
energy (dashed-dotted red). Notice that the median original cluster energy is significantly smaller
than the true energy for clusters with higher true energy, and this is properly corrected for by the
LCW method. However, the LCW method still significantly overpredicts the true energy for clusters
whose energy is less than 1 GeV. On the other hand, the DenseNet regression model predicts the
true energy extremely well for clusters with true energy even as low as 0.3 GeV. The overprediction
of the calibrated energy for clusters with low energies is likely due to the large influence of noise in
cluster formation and on cluster energy at these low energies.

The DenseNet regression model trained on the original training sample was also used to predict
the true energies of clusters for a different single pion sample, which is affected differently by noise
compared to the original training sample due to a different noise cutoff. As seen in Figure 2,
the DenseNet regression model (solid blue) fails to predict the true energy as well as the LCW
calibration model (dashed-dotted blue). Still, the DenseNet regression model still predicts the true
energy better than the original cluster energy (dashed blue) at high energies.
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Figure 2: The ratio between the calibrated and true energy as a function of true energy, comparing
inference with the model trained on the original idealized training sample versus previous methods of energy
calibration. Results are displayed for the original training sample (red), a different single pion sample (blue),
and a jet sample (green).
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Figure 3: The ratio between the calibrated and true energy as a function of true energy, comparing inference
with the model trained on the single pion sample versus previous methods of energy calibration. Results are
displayed for a single pion sample (blue) and a jet sample (green).
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Finally, the classifier and regression model were used in succession to predict the true energy
of clusters created from a jet sample, JZ2W, which includes both neutral pion (electromagnetic)
showers and charged pion (hadronic) showers. For each cluster, the classifier was used, with classifi-
cation cutoff p = 0.5, to determine if the cluster cam from a charged or neutral pion. Depending on
the classification, the corresponding regression model was used to predict the cluster’s true energy.
Again, the DenseNet regression model (solid green) predicts the cluster energy relatively well at
high cluster energies, but fails to predict the energy as well as the LCW model (dashed-dotted
green).

Although the DenseNet model fails to predict the true cluster energy as well as the LCW model
for the latter two samples, the results are still promising: the DenseNet model still predicts the
cluster energy relatively well even though the latter two samples are affected differently by noise
compared to the training sample and the jet sample includes clusters produced by both neutral
and charged pions.

2.4.3 Training on a Different Sample

Due to the issues in predicting the cluster energies for the single pion sample with the DenseNet
model trained on the training data, another DenseNet model was trained on the single pion data
itself to see if there were differences in behavior. The results of cross-validation and prediction with
this model are shown in Figure 3. As seen from the cross-validation (solid blue), the DenseNet
model is much better at predicting the cluster energies for the single pion data when being trained
on a portion of the same data rather than the training data. It is also still an improvement to
the LCW model at low energies. However, it is valuable to note that the cross-validation curve for
the single pion sample in Figure 3 is not as good as the one for the training sample in Figure 2,
indicating that there is perhaps some trouble in modeling the energy calibration for the single pion
sample.

Once again, the classifier, which was still trained on the original training sample, and the regres-
sion were applied in succession to calibrate the cluster energies for the JZ2W jet sample. Here, the
DenseNet model (solid green) actually improves on the LCW model (dashed-dotted green), as seen
in Figure 3. Since the only change in this calibration was the data on which the regression model
was trained, it is likely that there is an intrinsic difference between the original training sample
and the latter two samples outside of the noise cutoff mentioned previously. Still, the results of the
DenseNet predictions for the jet sample are incredibly promising, showing that machine learning
techniques could lead to large improvements in particle reconstruction in the future.

2.5 Future Work

The use of machine learning methods for classification and energy calibration shows great potential.
In the future, it will be valuable explore the classification cutoff p and its effect on energy calibration
for jet samples with multiple types of particles. Additionally, the difference between the training
sample and single pion sample should be examined to try to explain the difficulty that the DenseNet
model trained on the training sample had in predicting the cluster energies for the single pion
sample.
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3 Implementing a Data Generator

So far, the training or testing data was fully loaded into memory as NumPy arrays to be passed into
the TensorFlow fit and evaluate functions. When the number of clusters in the sample becomes
large, this clearly takes up a lot of memory, so the problem cannot be scaled as easily. To solve this
issue, a memory-efficient data generator using uproot was implemented. uproot is a reader and
a writer of the ROOT file format, which is the format of choice for high-energy nuclear collision
simulations data. uproot uses NumPy to cast blocks of data from ROOT files to NumPy arrays,
and its iterate method allows the user to read specific entries from the ROOT files as needed.
The data generator utilizes uproot by declaring a batch size and then iterating over the data in
that batch size, using iterate to read in the specific block of data each iteration.

Since the data is loaded each iteration, the data generator was initially much slower per epoch
than simply loading in all the data into NumPy arrays. However, the data generator allows use of
multiprocessing, which speeds up the training and evaluating by allowing processes to be done in
parallel. When using eight multiprocessing workers and a batch size of 1028, evaluation using the
data generator was almost as fast as using full NumPy arrays.

3.1 Future Work

Moving forward, it will be valuable to implement the ability to shuffle the input data in the data
generator, as shuffling data after each epoch is a common technique used when training to allow
the model to see the data in various orders over time.
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