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Resummation of Divergent Series

Most differential equations have divergent asymptotic series

Hamiltonian perturbation expansions

Borel-Écalle resummation method

Resum divergent series to uncover information about the underlying
physical solution
Abstract method, giving integral representations of functions

Want to find accurate, precise, and reliable methods to calculate the
functions
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Challenge: Limited Information

The first major challenge of resummation of divergent series is that one
often is dealing with truncated asymptotic series that do not give full
information about the solution:

Wish to get maximum information about the function when
truncating the divergent asymptotic series

Developed and studied conformal Padé approximants, better
approximations of the function in the Borel plane when using limited
terms
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Challenge: Integral Representations

The second major challenge of resummation of divergent series is that
Borel-Écalle resummation gives an integral expression:

Integral representations are computationally expensive

Re-expand the function H in the Borel plane using binary rational
expansion

Give a representation of the original function h in terms of only the
coefficients of the expansion
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The Laplace Transform

This transform is given by

LF (x) =

∫ ∞
0

e−xpF (p) dp (1)

for Re(x) > ν ≥ 0.

It has the following properties:

Extends domain of analyticity

Injective

Linear: L(aF + G ) = aL(F ) + L(G )

L(pnF )(x) = (−1)n
dn

dxn
LF (x)

L(F ∗ G ) = L(F ) · L(G ), where (F ∗ G )(p) :=

∫ p

0
F (s)G (p − s) ds

Invertible
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Useful Examples from Laplace Transform

This first example is the basis of defining the Borel transform:

Example 1

For all n ∈ N, show that L(pn)(x) =
n!

xn+1
.

This second example is integral in the idea of the binary rational expansion:

Example 2

Let a ∈ C. Then, L(eap)(x) =
1

x − a
.
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Borel Transform and Borel Summation

Formal Laplace transform on series, L̃ : C[[p]]→ x−1C[[x−1]]:

L̃

( ∞∑
k=0

ckp
k

)
=
∞∑
k=0

ck
k!

xk+1
(2)

Borel transform, B : x−1C[[x−1]]→ C[[p]], is the formal inverse of L̃:

B

( ∞∑
k=0

ck
xk+1

)
=
∞∑
k=0

ck
k!

pk (3)

Borel summation (along R+):

1 Borel transform the series, f̃ 7→ B(f̃ )

2 Sum the series B(f̃ ) and analytically continue along R+, denoting the
analytic continuation F

3 Laplace transform back, F 7→ L(F ) =: LB(f̃ )
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Transseries

Consist of all formally asymptotic expansions in powers, small
exponentials, and logarithms

Utilized to solve ODEs

For our problem, it is of the form:

ỹ = ỹ0 +
∑

k≥0;|k|>0

C k1
1 · · ·C

kn
n e−(k·λ)xx−k·βỹk (4)

ỹk are all integer power series

ỹ0 is the asymptotic series of the solution

The variable x is called the Écalle critical time
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Watson’s Lemma

Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1 as p → 0+ for

some constants βi with Re(βi ) > 0, i = 1, 2. Then, for a ≤ ∞,

f (x) =

∫ a

0
e−xpF (p) dp ∼

∞∑
k=0

ck
Γ(kβ1 + β2)

xkβ1+β2
(5)

as x →∞ along any ray in H.

Remark

Watson’s lemma also holds for F ∈ L1loc(R+) such that F is exponentially
bounded.
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Painlevé Equation PII

The Painlevé equations are six special differential equations with the
Painlevé property, meaning the solutions have no movable branch point
singularities.

Painlevé equation PII:
y ′′ = 2y3 + xy + α. (6)

Directly related to distribution of eigenvalues of random matrices in
nuclear physics

Look for solutions when α 6= 0 and y ∼ −α
x

Écalle critical time is t = 2
3x

3/2

After substitution y(x) = x−1(−α + th(t)) and change of variables
t = 2

3x
3/2, get the equation

h′′ +
h′

t
−
(

1 +
24α2 + 1

9t2

)
h − 8

9
h3 +

8α

3t
h2 +

8(α3 − α)

9t3
= 0. (7)
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Properties of Function in Borel Plane

Let H denote the analytic continuation of H̃ = B(h̃), where h̃ is the
asymptotic series to the solution h to Equation 7. H has the following
properties:

Even

Set of singularities: Z \ {0}
Single valued and analytic on the simply connected domain
C \ ((−∞,−1] ∪ [1,∞)), denoted now by D
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Padé Approximants

The [m/n] Padé approximant of F at p = 0 is a rational function Am/Bn,
where Am is a polynomial of degree at most m, Bn is a polynomial of
degree at most n, and

F (p)− Am(p)

Bn(p)
= O(pm+n+1) (8)

as p → 0. In order to have uniqueness, it is also required that Bn(0) = 1.

If F admits a convergent Maclaurin series F̃ , the Padé approximant is
determined by F̃

Diverge on the cuts (−∞,−1] and [1,∞)

Place singularities densely behind the singularities at 1 and −1
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Padé Approximants (con’t)

Figure: Poles produced by the [200/200] Padé approximant.

Michael Heinz (The Ohio State University) Apr 22, 2020 13 / 21



Continued Fraction Approximants

The generalized continued fraction of a Maclaurien series F̃ is an
expansion of the function in the form

F̃ (p) = b0 +
β1(p)

1 +
β2(p)

1 + · · ·

=: b0 +
β1
1 +

β2
1 +

· · · , (9)

where, for all i , βi (p) = aip
αi with ai 6= 0 and αi ≥ 1.

n-th convergent given by b0 +
β1
1 +

β2
1 +

· · ·
+
βn
1

correspond to Padé approximants
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Michael Heinz (The Ohio State University) Apr 22, 2020 14 / 21



Terminants for Continued Fraction Approximants

One can approximate infinite continued fraction with terminant φ, giving
the approximant:

b0 +
β1
1 +

β2
1 +

· · ·
+
βn
1 +

φ

1
(10)

For PII, βi (p) = aip
2 where ai → −1

4

Gives terminant

φ(p) = − p2

2(1 +
√

1− p2)
(11)

Can adjust terminant by studying the rate of convergence at which
ai → −1

4 , giving

φasym(p) = − p2

2(1 +
√

1− p2)
+ (−1)n

(
6.75

16(n + 1)

)
p2 (12)

Michael Heinz (The Ohio State University) Apr 22, 2020 15 / 21



Terminants for Continued Fraction Approximants

One can approximate infinite continued fraction with terminant φ, giving
the approximant:

b0 +
β1
1 +

β2
1 +

· · ·
+
βn
1 +

φ

1
(10)

For PII, βi (p) = aip
2 where ai → −1

4

Gives terminant

φ(p) = − p2

2(1 +
√

1− p2)
(11)

Can adjust terminant by studying the rate of convergence at which
ai → −1

4 , giving

φasym(p) = − p2

2(1 +
√

1− p2)
+ (−1)n

(
6.75

16(n + 1)

)
p2 (12)

Michael Heinz (The Ohio State University) Apr 22, 2020 15 / 21



Terminants for Continued Fraction Approximants

One can approximate infinite continued fraction with terminant φ, giving
the approximant:

b0 +
β1
1 +

β2
1 +

· · ·
+
βn
1 +

φ

1
(10)

For PII, βi (p) = aip
2 where ai → −1

4

Gives terminant

φ(p) = − p2

2(1 +
√

1− p2)
(11)

Can adjust terminant by studying the rate of convergence at which
ai → −1

4 , giving

φasym(p) = − p2

2(1 +
√

1− p2)
+ (−1)n

(
6.75

16(n + 1)

)
p2 (12)

Michael Heinz (The Ohio State University) Apr 22, 2020 15 / 21



Conformal Padé Approximants

We wish to first transform the problem into the unit disk by finding a
function ψ that maps D into the unit disk D:

ψ(p) =
1−

√
1− p2

p
(13)

Maps the cuts (−∞,−1] and [1,∞) to the boundary of the unit disk,
∂D
Inverse is given by

ϕ(z) := ψ−1(z) =
2z

1 + z2
(14)

G = H ◦ϕ is analytic in D, and its Taylor series is given by G̃ = H̃ ◦ϕ
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Conformal Padé Approximants (con’t)

We then find the Padé approximants of G̃ , which places singularities on
rays originating at points of ∂D and going outwards. These Padé
approximants are mapped back to D by composing with ϕ.

(a) Borel plane (b) Conformal plane

Figure: Singularities produced by the [200/200] conformal Padé approximant.
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Error Along Line of Singularities

Figure: Comparison of relative error of different approximations, each at 150
terms, to conformal Padé at 200 terms along the line p = x + 10−3i .

Michael Heinz (The Ohio State University) Apr 22, 2020 18 / 21



Error Along Softest Line

Figure: Comparison of relative error of different approximations, each at 150
terms, to conformal Padé at 200 terms along the softest line p = yi .
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Binary Rational Expansion

We first re-expand H in the Borel plane as follows:

H(p) = c0 +
∞∑

m=1

∞∑
k=0

cm,k

(
1− eβip/2

k
)m

(15)

Taking the Laplace transform h(t) = LH(t), we get that

h(t) =
c0
t

+
∞∑

m=1

∞∑
k=0

(−1)m(βi)mm!cm,k
t(2kt − βi)(2kt − 2βi) · · · (2kt −mβi)

(16)

Coefficients cm,k can be calculated from integrals

Attempted to calculate coefficients cm,k by sums of derivatives, but
these come arbitrarily close to the singularities of H and therefore
can’t be efficiently calculated
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Conclusions and Future Work

Conclusions:

Developed and studied conformal Padé approximants

Showed numerically that they approximate the function H better along
the line of singularities and the softest line
Showed numerically that they converge fastest as number of terms
increases, meaning they can deal with limited information the best

Did a preliminary calculation of the binary rational expansion for PII

Future Work:

Calculate the coefficients of the binary rational expansion of PII using
integrals

Requires careful choice of contours of integration

Calculate the coefficients of the binary rational expansion for solutions
to other important differential equations
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Convergence Along Line of Singularities

Figure: Padé
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Convergence Along Line of Singularities

Figure: CFwT
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Convergence Along Line of Singularities

Figure: CFwAT
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Convergence Along Line of Singularities

Figure: Conformal Padé
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Convergence Along Softest Line

Figure: Padé
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Convergence Along Softest Line

Figure: CFwT
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Convergence Along Softest Line

Figure: CFwAT
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Convergence Along Softest Line

Figure: Conformal Padé
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Plots Along Line of Singularities

Figure
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