Math 128A: Worksheet \#1

Name: \qquad Date: September 14, 2020
Fall 2020
Problem 1: Consider the following two functions:

$$
\begin{aligned}
& g_{1}(x)=-\frac{1}{12} x^{3}+x+\frac{5}{12} \\
& g_{2}(x)=\frac{2}{3} x+\frac{5}{3} \frac{1}{x^{2}}
\end{aligned}
$$

Both have $x^{*}=\sqrt[3]{5}$ as a fixed point. For which of these functions does fixed point iteration converge to x^{*} ? If both of them converge, which one is faster?

Problem $2(2.3 \# 1)$: Let $f(x)=x^{2}-6$ and $p_{0}=1$. Use Newton's method to find p_{2}.

Problem 3 (2.3\#5a): Use Newton's method to find a solution accurate to within 10^{-4} for:

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

Problem 4: Show that the sequence

$$
p_{n}=\frac{1}{n^{3}}, \quad n \geq 1
$$

converges linearly to $p=0$. How large must n be before $\left|p_{n}-p\right| \leq 5 \times 10^{-2}$?

