Math 128A: Worksheet #1

 Name:
 Date:
 September 14, 2020

 Fall 2020
 Fall 2020

Problem 1: Consider the following two functions:

$$g_1(x) = -\frac{1}{12}x^3 + x + \frac{5}{12}$$
$$g_2(x) = \frac{2}{3}x + \frac{5}{3}\frac{1}{x^2}$$

Both have $x^* = \sqrt[3]{5}$ as a fixed point. For which of these functions does fixed point iteration converge to x^* ? If both of them converge, which one is faster?

The smaller k rs, the Faster it converges.

$$g'_1(x) = -\frac{1}{11}x^2 + 1$$
, $g'_2(x) = \frac{2}{3} - \frac{10}{3}\frac{1}{x^3}$
 $g'_1(x^*) \approx 0.269$, $g'_2(x^*) = 0$
Since $g'_2(x^*) = 0$ and $g'_2(x)$ is continuous, I can
find an interval around x^* s.t. $|g'_2(x)| = 0.1 - 1$.
On the other hand, since $g'_1(x^*) = 0.269$ and $g'_1(x)$ is
continuous, I can also find an interval around x^* s.t.
 $|g'_1(x)| \leq k < 1$, but here $k \geq 0.269$ since $|g'_1(x^*)| = 0.269$.
Thus, the second converges fuster.
We can also see this emperically using MATLAB.
Why both g_1 and g_2 map onto themselves on some
interval is on page 2.

One way to know g maps onto itself.
If we have a fixed point
$$x^*$$
 of g
and on some interval (x^*-5, x^*+b) , $|g'(x)| \le k \le 1$
Then g maps on to itself.
By the MNT, $\forall x \in (x^*-5, x^*+b)$
 $|g(x) - x^*| = |g(x) - g(x^*)| = |g'(5)| |x - x^*| \le |x - x^*|$
Fixed point
 ≤ 5 .
 $\Rightarrow g(x) = (x^*-5, x^*+b)$
 $x^* + (x^*-5)$

Problem 2 (2.3 #1): Let $f(x) = x^2 - 6$ and $p_0 = 1$. Use Newton's method to find p_2 .

$$\begin{aligned} p_{n} &= p_{n-1} - \frac{f(p_{n-1})}{g'(p_{n-1})} \\ g'(x) &= 2x \\ p_{1} &= p_{0} - \frac{g(p_{0})}{g'(p_{0})} = 1 - \frac{-5}{2} \\ &= 1 + \frac{5}{2} = \frac{7}{2} \\ p_{2} &= p_{1} - \frac{f(p_{1})}{g'(p_{1})} = \frac{7}{2} - \frac{49}{4} - \frac{6}{7} \\ &= \frac{7}{2} - \frac{29}{7} = \frac{7}{2} - \frac{25}{28} = \frac{73}{28} \end{aligned}$$

Problem 3 (2.3 #5a): Use Newton's method to find a solution accurate to within 10^{-4} for:

$$x^3 - 2x^2 - 5 = 0, \quad [1, 4]$$

MATLAB Demo. Get
$$x \approx 2.6906475$$
,

Problem 4: Show that the sequence

$$p_n = \frac{1}{n^3}, \quad n \ge 1$$

converges linearly to p = 0. How large must n be before $|p_n - p| \le 5 \times 10^{-2}$?

Linear convergence:
$$\lim_{n \to \infty} \frac{|\mu_{n-p}|}{|p_{n-p}|} = \lambda > 0.$$

Here,
$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \frac{1}{n^3} = 0.$$
 Thus,

$$\lim_{n \to \infty} \frac{|p_{n+1}-p|}{|p_{n-p}|} = \lim_{n \to \infty} \frac{1}{(n+1)^3} - 0] = \lim_{n \to \infty} \frac{1}{n^3} = \lim_{n \to \infty} \frac{n^3}{(n+1)^3}$$

$$= \lim_{n \to \infty} \frac{n^3}{n^3 + 3n^4 + 3n + 1} = 1$$

Thus, it converges linearly. If we want $|p_{n-p}| \le 5 \times 10^{-7}$,

$$\frac{1}{n^3} = -0\} \le 5 \times 10^{-2}$$

$$\frac{1}{n^3} \le 5 \times 10^{-2}$$

$$\frac{1}{n^3} \ge \frac{1}{5 \times 10^{-2}}$$

$$h \ge \frac{3}{\sqrt{\frac{1}{5 \times 10^{-2}}} \approx 2.7$$

Thus, need $n=3$