Math 128A: Worksheet \#1
$\qquad$

Problem 1: Consider the following two functions:

$$
\begin{aligned}
& g_{1}(x)=-\frac{1}{12} x^{3}+x+\frac{5}{12} \\
& g_{2}(x)=\frac{2}{3} x+\frac{5}{3} \frac{1}{x^{2}}
\end{aligned}
$$

Both have $x^{*}=\sqrt[3]{5}$ as a fixed point. For which of these functions does fixed point iteration converge to $x^{*}$ ? If both of them converge, which one is faster?

$$
\left|g^{\prime}(x)\right| \leq k<1 .
$$

The smaller $k$ is, the faster it converges.

$$
\begin{array}{ll}
g_{1}^{\prime}(x)=-\frac{1}{4} x^{2}+1, & g_{2}^{\prime}(x)=\frac{2}{3}-\frac{10}{3} \frac{1}{x^{3}} \\
g_{1}^{\prime}\left(x^{7}\right) \approx 0.269, & g_{2}^{\prime}\left(x^{4}\right)=0
\end{array}
$$

Since $g_{2}^{\prime}\left(x^{*}\right)=0$ and $g_{2}^{\prime}(x)$ is continuous, I can find an interval around $x^{*}$ sit. $\left|g_{2}^{\prime}(x)\right| \leq 0.1<1$.
On the other hand, since $g_{1}^{\prime}\left(x^{*}\right)=0.269$ and $g_{1}^{\prime}(x)$ is continuous, I can also find an interval around $x^{*}$ s.t. $\left|g_{1}^{\prime}(x)\right| \leq k<1$, but here $k \leq 0.269$ since $\lg _{1}^{\prime}\left(x^{*}\right) \mid=0.269$. Thus, the second converges faster.

We can also see this emperically using MATLAB. Why both $g_{1}$ and $g_{2}$ map onto thauselves on some interval is on page 2 .

One way to know g raps onto itself.
If we have a fixed point $x^{*}$ of $g$ and on some interval $\left(x^{*}-\delta, x^{*}+\delta\right),\left|g^{\prime}(x)\right| \leq k<1$ Then $g$ maps on to itself.

By the MVT, $\forall x \in\left(x^{*}-\delta, x^{*}+\delta\right)$

$$
\lg (x)-x^{*}\left|=\left|g(x)-g\left(x^{*}\right)\right|=\left|g^{\prime}(\xi)\right|\right| x-x^{*}\left|<\left|x-x^{*}\right|\right.
$$

fixed point

$$
\Sigma S
$$

$$
\Rightarrow \quad g(x)=\left(x^{*}-\delta, x^{*}+\delta\right)
$$



Error bands for fixed point theorem

$$
\begin{aligned}
& \left|p_{n}-p\right| \leq k^{n} \underbrace{\left.b-p_{0}\right\}}_{p \in[a, b],\left|p-p_{0}\right| \leq \max \left\{a-p_{0},\right.} \\
& \left|p_{n} \cdot p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right| \\
& n\left(p_{0}\right) .
\end{aligned}
$$

Problem $2(2.3 \# 1)$ : Let $f(x)=x^{2}-6$ and $p_{0}=1$. Use Newton's method to find $p_{2}$.

$$
\begin{aligned}
p_{n} & =p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)} \\
f^{\prime}(x) & =2 x \\
p_{1} & =p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}=1-\frac{-5}{2} \\
& =1+\frac{5}{2}=\frac{7}{2} \\
p_{2} & =p_{1}-\frac{f\left(p_{1}\right)}{f^{\prime}\left(p_{1}\right)}=\frac{7}{2}-\frac{\frac{49}{4}-6}{7} \\
& =\frac{7}{2}-\frac{\frac{25}{4}}{7}=\frac{7}{2}-\frac{25}{28}=\frac{73}{28}
\end{aligned}
$$

Problem 3 (2.3 \#as): Use Newton's method to find a solution accurate to within $10^{-4}$ for:

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

$$
\text { MATLAB Demo. Get } x \approx 2.6906475 \text {. }
$$

Problem 4: Show that the sequence

$$
p_{n}=\frac{1}{n^{3}}, \quad n \geq 1
$$

converges linearly to $p=0$. How large must $n$ be before $\left|p_{n}-p\right| \leq 5 \times 10^{-2}$ ?
Linear convergence: $\lim _{n \rightarrow \infty} \frac{\left|p_{n+n}-p\right|}{\left|p_{n}-p\right|}=\lambda>0$.
Here, $\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=0$. Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|} & =\lim _{n \rightarrow \infty} \frac{\left.\frac{1}{(n+1)^{3}}-0 \right\rvert\,}{\left|\frac{1}{n^{3}}-0\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{3}}}{\frac{1}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{n^{3}}{(n+1)^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}+3 n^{2}+3 n+1}=1
\end{aligned}
$$

Thus, it converges linearly. If we want $\mid$ pun $-p \mid \leq 5 \times 10^{-2}$,

$$
\begin{aligned}
\left.1 \frac{1}{n^{3}}-0 \right\rvert\, & \leq 5 \times 10^{-2} \\
\frac{1}{n^{3}} & \leq 5 \times 10^{-2} \\
n^{3} & \geq \frac{1}{5 \times 10^{-2}} \\
n & \geq \sqrt[3]{\frac{1}{5 \times 10^{-2}}} \approx 2.7
\end{aligned}
$$

Thus, need $n=3$

