Math 128A: Worksheet \#2

Name: \qquad Date: September 21, 2020

Fall 2020
Problem 1 (2.4\#9): a. Construct a sequence that converges to 0 of order 3.
b. Suppose $\alpha>1$. Construct a sequence that converges to 0 of order α.

Problem $2(2.5 \# 2)$: Consider the function $f(x)=e^{6 x}+3(\ln 2)^{2} e^{2 x}-(\ln 8) e^{4 x}-(\ln 2)^{3}$. Use Newton's method with $p_{0}=0$ to approximate a zero of f. Generate terms until $\left|p_{n+1}-p_{n}\right|<0.0002$. Construct the sequence $\left\{\hat{p}_{n}\right\}$. Is the convergence improved?

Extra: Using $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$, use Steffenson's method to find the zero of f. Is convergence improved?

Problem 3 (2.5\#15): Suppose that $\left\{p_{n}\right\}$ is superlinearly convergent to p. Show that

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p_{n}\right|}{\left|p_{n}-p\right|}=1
$$

Reminder: A sequence $\left\{p_{n}\right\}$ is said to be superlinearly convergent to p if

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=0
$$

Problem $4(3.1 \# 1 \mathrm{c})$: For the function $f(x)=\sqrt{1+x}$, let $x_{0}=0, x_{1}=0.6$, and $x_{2}=0.9$. Construct interpolation polynomials of degree at most one and at most two to approximate $f(0.45)$ and find the absolute error.

Problem $5(3.1 \# 3)$: Use Theorem 3.3 to find an error bound for the approximations in the previous exercise.

