Math 128A: Worksheet #2

 Name:
 Date:
 September 21, 2020

 Fall 2020

Problem 1 (2.4 #9): a. Construct a sequence that converges to 0 of order 3.

b. Suppose $\alpha > 1$. Construct a sequence that converges to 0 of order α .

Problem 2 (2.5 #2): Consider the function $f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3$. Use Newton's method with $p_0 = 0$ to approximate a zero of f. Generate terms until $|p_{n+1} - p_n| < 0.0002$. Construct the sequence $\{\hat{p}_n\}$. Is the convergence improved?

Extra: Using $g(x) = x - \frac{f(x)}{f'(x)}$, use Steffenson's method to find the zero of f. Is convergence improved?

Problem 3 (2.5 #15): Suppose that $\{p_n\}$ is superlinearly convergent to p. Show that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|} = 1.$$

Reminder: A sequence $\{p_n\}$ is said to be superlinearly convergent to p if

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = 0.$$

Problem 4 (3.1 #1c): For the function $f(x) = \sqrt{1+x}$, let $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. Construct interpolation polynomials of degree at most one and at most two to approximate f(0.45) and find the absolute error.

Problem 5 (3.1 #3): Use Theorem 3.3 to find an error bound for the approximations in the previous exercise.