Math 128A: Worksheet #4

 Name:
 Date:
 October 5, 2020

 Fall 2020
 Fall 2020

Problem 1. 1. Use the Hermite theorem or divided differences to construct an approximating polynomial for the following data:

2. This data was taken from the function $f(x) = (1 + x^2)^{-1}$. Use the interpolating polynomials to approximate f(0.25). Give the actual error and the error bound on this approximation.

Problem 2. 1. Construct the natural cubic spline for the following data (by hand and using Matlab):

$$\begin{array}{c|ccc}
x & f(x) \\
\hline
0 & 3 \\
1 & 0 \\
2 & 3
\end{array}$$

- 2. This data was taken from the function $f(x) = 3(x-1)^2$. Use the cubic splines to approximate f(0.5) and f'(0.5), and calculate the actual error.
- 3. This data also matches the function $g(x) = 3x^4 5x^3 3x^2 + 2x + 3$. Use the cubic splines to approximate g(0.5) and g'(0.5), and calculate the actual error.

Problem 3 (4.1, #28). Derive a method for approximating $f'''(x_0)$ whose error term is of order h^2 by expanding the function f in a fourth Taylor polynomial about x_0 and evaluating at $x_0 \pm h$ and $x_0 \pm 2h$.

Problem 4 (4.2, #1a). Apply Richardson's Extrapolation on the centered-difference formula:

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f^{(5)}(x_0) - \dots$$

to determine $N_3(h)$, an approximation to $f'(x_0)$, for the following function and stepsize:

$$f(x) = \ln(x), \quad x_0 = 1.0, \quad h = 0.4.$$