Math 128A: Worksheet \#4

Name: \qquad Date: October 5, 2020
Fall 2020
Problem 1. 1. Use the Hermite theorem or divided differences to construct an approximating polynomial for the following data:

x	$f(x)$	$f^{\prime}(x)$
0	1	0
0.5	0.8	-0.64

2. This data was taken from the function $f(x)=\left(1+x^{2}\right)^{-1}$. Use the interpolating polynomials to approximate $f(0.25)$. Give the actual error and the error bound on this approximation.

Problem 2. 1. Construct the natural cubic spline for the following data (by hand and using Matlab):

x	$f(x)$
0	3
1	0
2	3

2. This data was taken from the function $f(x)=3(x-1)^{2}$. Use the cubic splines to approximate $f(0.5)$ and $f^{\prime}(0.5)$, and calculate the actual error.
3. This data also matches the function $g(x)=3 x^{4}-5 x^{3}-3 x^{2}+2 x+3$. Use the cubic splines to approximate $g(0.5)$ and $g^{\prime}(0.5)$, and calculate the actual error.

Problem 3 (4.1, \#28). Derive a method for approximating $f^{\prime \prime \prime}\left(x_{0}\right)$ whose error term is of order h^{2} by expanding the function f in a fourth Taylor polynomial about x_{0} and evaluating at $x_{0} \pm h$ and $x_{0} \pm 2 h$.

Problem 4 (4.2, \#1a). Apply Richardson's Extrapolation on the centered-difference formula:

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\ldots
$$

to determine $N_{3}(h)$, an approximation to $f^{\prime}\left(x_{0}\right)$, for the following function and stepsize:

$$
f(x)=\ln (x), \quad x_{0}=1.0, \quad h=0.4
$$

