Math 128A: Worksheet \#7

Name: \qquad Date: October 19, 2020

Fall 2020

Problem 1 (4.6 \#1 c,d). Compute Simpson's rule approximations $S(a, b), S\left(a, \frac{a+b}{2}\right)$, and $S\left(\frac{a+b}{2}, b\right)$ for the following integrals and verify the estimate given in the approximation formula:
c. $\int_{0}^{0.35} \frac{2}{x^{2}-4} d x$
d. $\int_{0}^{\pi / 4} x^{2} \sin x d x$

Problem 2. Let $I(a, b)$ and $I\left(a, \frac{a+b}{2}\right)+I\left(\frac{a+b}{2}, b\right)$ denote the single and double applications of the Simpson's Three-Eighths rule to $\int_{a}^{b} f(x) d x$. That is,

$$
I(a, b)=\frac{3 h}{8}[f(a)+3 f(a+h)+3 f(a+2 h)+f(b)]
$$

where $h=\frac{b-a}{3}$. $I\left(a, \frac{a+b}{2}\right)$ and $I\left(\frac{a+b}{2}, b\right)$ are defined similarly.
Derive the relationship between

$$
\left|I(a, b)-I\left(a, \frac{a+b}{2}\right)-I\left(\frac{a+b}{2}, b\right)\right|
$$

and

$$
\left|\int_{a}^{b} f(x) d x-I\left(a, \frac{a+b}{2}\right)-I\left(\frac{a+b}{2}, b\right)\right|
$$

What does this tell us about estimating the error of our numerical integration?

