Math 128A: Worksheet \#8

Name: \qquad
Fall 2020
Problem 1. Consider the integration rule

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

with n nodes $x_{1}<\cdots<x_{n}$ and n weights c_{1}, \ldots, c_{n}.
(a) First, suppose that the nodes x_{1}, \cdots, x_{n} are fixed. Show that by choosing the weights c_{1}, \ldots, c_{n} appropriately we can always guarantee the degree of precision is at least $n-1$.
(b) What is the highest degree of precision we can possibly achieve with n nodes and weights? Show that it is impossible to have degree of precision higher than that.
(a) We want to ensure that $\int_{0}^{1} x^{j} d x=\sum_{i=1}^{n} c_{i} x_{i}^{j}$ for $0 \leq j \leq n-1$.

Now, $\quad \int_{0}^{1} x^{j} d x=\left.\frac{x^{j+1}}{j+1}\right|_{0} ^{1}=\frac{1}{j+1}$, so we need $\sum_{i=1}^{n} c_{i} x_{i}^{j}=c_{1} x_{i}^{j}+\ldots+c_{n} x_{n}^{j}=\frac{1}{j+1}$. for $0 \leq j \leq n-1$.
We can write this as the following matrix equation:

$$
A \vec{c}=\left(\begin{array}{cccc}
x_{1}^{0} & x_{2}^{0} & \cdots & x_{n}^{0} \\
x_{1}^{\prime} & x_{2}^{\prime} & \cdots & x_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\frac{1}{2} \\
\vdots \\
\frac{1}{n}
\end{array}\right)
$$

invertible
This matrix equation has a solution for c_{1}, \ldots, c_{n} as long as the matrix A is nonsingular.
Now, notice that the rows of A are linearly independent: let b_{0}, \ldots, b_{n-1} be coefficients s.t.

Then,

$$
\begin{aligned}
& b_{0}\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)+b_{1}\left(x_{1}^{1}, \ldots, x_{n}^{\prime}\right)+\ldots+b_{n-1}\left(x_{1}^{n-1}, \ldots, x_{n}^{n-1}\right)=(0, \ldots, 0)<\text { want to show } b_{0}=b_{1}=\ldots=b_{n-1}=0 \\
& P\left(x_{1}\right) \\
& \left(b_{0} x_{1}^{0}+b_{1} x_{1}^{\prime \prime}+\ldots+b_{n-1} x_{1}^{n-1}, b_{0} x_{2}^{0}+b_{1} x_{2}^{1}+\ldots+b_{n-1} x_{2}^{n-1}, \ldots, b_{0} x_{n}^{0}+b_{1} x_{n}^{\prime \prime}+\ldots+b_{n-1} x_{n}^{n-1}\right)=(0,0, \ldots, 0)
\end{aligned}
$$

Letting $P(x)=b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}$, we see that x_{1}, \ldots, x_{n} are all roots of P, which are all distinct. However, P is a polynomial of degree at most $(n-1)$, so it must be the zero polynomial. Thus, $b_{0}=b_{1}=\ldots=b_{n-1}=0$. Hence, the vows of A are linearly independent.

Thus, A is invertible, and choosing

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=A^{-1}\left(\begin{array}{c}
1 \\
\frac{1}{2} \\
\vdots \\
\frac{1}{n}
\end{array}\right),
$$

we have that the method has degree of precision at least $n-1$.
\qquad
Fall 2020
Problem 1. Consider the integration rule

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

with n nodes $x_{1}<\cdots<x_{n}$ and n weights c_{1}, \ldots, c_{n}.
(a) First, suppose that the nodes x_{1}, \cdots, x_{n} are fixed. Show that by choosing the weights c_{1}, \ldots, c_{n} appropriately we can always guarantee the degree of precision is at least $n-1$.
(b) What is the highest degree of precision we can possibly achieve with n nodes and weights? Show that it is impossible to have degree of precision higher than that.
(b) This was a homework question. The highest degree of precision is $2 n-1$, which is achieved by Gaussian quadrature (you can transform the integral $\int_{0}^{1} f(x) d x$ to an integral $\int_{-1}^{1} f\left(\frac{t+1}{2}\right) \cdot \frac{1}{2} d t$). Indeed, this is the highest possible degree of precision. Let $\int_{0}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)$ be an arbitrary integration rule (so $c_{1}, \ldots, c_{n}, x_{1}, \ldots, x_{n}$ are arbitrary). Now, consider $P(x)=\left(x-x_{1}\right)^{2} \cdots\left(x-x_{n}\right)^{2}$, which has degree $=2 n$. Then, $\sum_{i=1}^{n} c_{i} P\left(x_{i}\right)=0$ since $P\left(x_{i}\right)=0$ for each i. On the other hand, $P(x) \geq 0 \forall x$, and $P(x)>0$ on any openiaterval excluding x_{1}, \ldots, x_{n}. Thus, $\quad \int_{0}^{1} P(x) d x>0$, so $\int_{0}^{1} P(x) d x \neq \sum_{i=1}^{n} c_{i} P\left(x_{i}\right)$, so the integration rule is not exact for $P(x)$. Since P has degree $2 n$, the degree of precision for the integration rule can be at most $2 n-1$.

Problem 2. Approximate the integral

$$
\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y
$$

using the composite trapezoidal rule with $n=2$ subintervals in both the x and y direction.
Woops, did this forst w/ Simpson's rale.
Trapezoidal rule on next page.

Let $f(x, y)=x^{2}+y^{2}$. Since $n=m=2, h=\frac{1-(-1)}{2}=1, k=\frac{1-(-1)}{2}=1$. Then,

$$
\begin{aligned}
\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y & =\int_{-1}^{1} \int_{-1}^{1} f(x, y) d x d y \\
& \approx \frac{h k}{9}(f(-1,-1)+4 f(0,-1)+f(1,-1)+4 f(-1,0)+16 f(0,0)+4 f(1,0)+f(-1,1)+48(0,1)+f(1,1)) \\
& =\frac{1 \cdot 1}{9}(2+4 \cdot 1+2+4 \cdot 1+16 \cdot 0+4 \cdot 1+2+4 \cdot 1+2) \\
& =\frac{1}{9}(8+8+8)=\frac{24}{9}=\frac{8}{3}=2.66667
\end{aligned}
$$

This is actually exact. The error term is given by

$$
E=-\frac{(d-c)(b-a)}{180}\left[h^{4} \frac{\partial^{4} f}{\partial x^{4}}(\eta, \mu)+k^{4} \frac{\partial^{4} f}{\partial y^{4}}\left(\eta^{\prime} \mu^{\prime}\right)\right]
$$

Here, $\frac{\partial^{4}}{\partial x^{4}} f(x, y)=0$ and $\frac{\partial^{4}}{\partial y^{4}} f(x, y)=0$, so $E=0$.

Problem 2. Approximate the integral

$$
\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y
$$

using the composite trapezoidal rule with $n=2$ subintervals in both the x and y direction.

Let $f(x, y)=x^{2}+y^{2}$. Since $n=m=2, h=\frac{1-(-1)}{2}=1, k=\frac{1-(-1)}{2}=1$. Then,

$$
\begin{aligned}
\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y & =\int_{-1}^{1} \int_{-1}^{1} f(x, y) d x d y \\
& \approx \frac{h k}{4}(f(-1,-1)+2 f(0,-1)+f(1,-1)+2 f(-1,0)+4 f(0,0)+2 f(1,0)+f(-1,1)+2 f(0,1)+f(1,1)) \\
& =\frac{1 \cdot 1}{4}(2+2 \cdot 1+2+2 \cdot 1+4 \cdot 0+2 \cdot 1+2+2 \cdot 1+2) \\
& =\frac{1}{4}(6+4+6)=\frac{16}{4}=4
\end{aligned}
$$

This is not exact. The error term is given by

$$
E=-\frac{(d-c)(b-a)}{12}\left[h^{2} \frac{\partial^{2} f}{\partial x^{2}}(\eta, \mu)+k^{2} \frac{\partial^{2} f}{\partial y^{2}}\left(\eta^{\prime} \mu^{\prime}\right)\right]
$$

Here, $\frac{\partial^{2}}{\partial x^{2}} f(x, y)=2$ and $\frac{\partial^{2}}{\partial y^{2}} f(x, y)=2$, so $E=-\frac{(d-c)(b-a)}{12}\left[h^{2} \cdot 2+k^{2} \cdot 2\right]=-\frac{(2)(2)}{12}[2 \cdot 1+2 \cdot 1]$

$$
=-\frac{16}{12}=-\frac{4}{3}
$$

Thus, $\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y=4-\frac{4}{3}=\frac{8}{3}$, which agrees with our result using simpson's rule.

Problem 3. (a) The error term of approximating the integral $\int_{a}^{b} f(x) d x$ using composite Simpson's rule is given by

$$
-\frac{b-a}{180} h^{4} f^{(4)}(\mu)
$$

where h denotes the length of the subintervals into which $[a, b]$ is divided. In order to compute an approximation of the integral via composite Simpson's rule we need to evaluate the function f a certain number of times. Call this number N. Express N in terms of h. How does the error depend on N ?
(b) The error term for approximating the double integral $\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y$ using double Simpson's rule is given by

$$
-\frac{(d-c)(b-a)}{180} h^{4}\left(\frac{\partial^{4} f}{\partial x^{4}} f(\eta, \mu)+\frac{\partial^{4} f}{\partial y^{4}} f\left(\eta^{\prime}, \mu^{\prime}\right)\right)
$$

Here the length of the subintervals in both x and y direction is given by h. Again, let N denote the number of times we need to evaluate f in order too compute the approximation. Repeat the same exercise. Express N in terms of h and the error in terms of N.
(c) What do you observe? What problem might we encounter when integrating a function $f\left(x_{1}, \ldots, x_{n}\right)$ on a high dimensional domain?
(a) When in one-dimension, we have that $h=\frac{b-a}{n}$, where n is the \# of subintervals. The number of points evaluated at is $N=n+1$, so $N=\frac{b-a}{h}+1$, or $h=\frac{b-a}{N-1}$.
Then, the error is given by

$$
E=-\frac{(b-a)}{180}\left(\frac{b-a}{N-1}\right)^{4} f^{(4)}(\mu)=-\frac{(b-a)^{5}}{180} \frac{1}{(N-1)^{4}} f^{(4)}(\mu)
$$

so $E=\theta\left(\frac{1}{N^{4}}\right)$.
(b). When in two-dimensions, we have that $h=\frac{b-a}{n_{1}}=\frac{d-c}{n_{2}}$, where n_{1} is the \# of interval in the x-direction and n_{2} is the $\#$ of intervals in the y-direction. Then, the number of points in the x-direction is $N_{1}=n_{1}+1$ and the number of points in the y-direction is $N_{2}=n_{2}+1$. Thus, the total \# of points on the grid is $N=N_{1} \cdot N_{2}=\left(\frac{b-a}{n}+1\right)\left(\frac{d-c}{n}+1\right)$. Thus,

$$
h=\frac{b-a}{N_{1}-1}=\frac{d-c}{N_{2}-1}=\sqrt{\left(\frac{b-a}{N_{1}-1}\right)\left(\frac{d-c}{N_{2}-1}\right)}=\sqrt{\frac{(b-a)(d-c)}{N_{1} N_{2}-N_{1}-N_{2}+1}}=\frac{1}{\sqrt{N}} \sqrt{\frac{(b-a)(d-c)^{7}}{1-\left(N_{1}+N_{2}-1\right) / N}}
$$

Hence,

$$
E=\frac{-(d-c)(b-a)}{180} \frac{1}{N^{2}}\left(\frac{(b-a)(d-c)}{1-\left(N_{1}+N_{2}-1\right) / N}\right)^{2}\left(\frac{\partial 4 f}{\partial x^{4}}(\eta, \mu)+\frac{\partial^{4} f}{\partial y^{4}}\left(\eta^{\prime}, \mu^{\prime}\right)\right)
$$

This, $E=O\left(\frac{1}{N^{2}}\right)$
(c) Since in 1-d the error is $\theta\left(\frac{1}{N^{4}}\right)$ and in $2-d$ the error is $\theta\left(\frac{1}{N^{2}}\right)$, the error in $2-d$ decreases much slower with the number of points N at which use evaluate. Thus, you need to do a lot more computation in the 2-d case to get the same error. This becomes even slower in higher dimensions n, as the error becomes $\theta\left(\frac{1}{N^{4 / n}}\right)$.

Problem 4 (4.8, \#9-ish). Use Algorithm 4.4 (Simpson's Double Integral) with $n=m=14$ to approximate

$$
\iint_{R} e^{-(x+y)} d A
$$

for the region R in the plane bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$.
First, we want to figure out R by finding where x^{2} and \sqrt{x} intersect:

$$
\begin{aligned}
\sqrt{x} & =x^{2} \\
x & =x^{4} \\
0 & =x^{4}-x=x\left(x^{3}-1\right)=x(x-1)\left(x^{2}+x+1\right)
\end{aligned}
$$

This occurs when $x=0$ and $x=1$. Then,

MATLAB demo: use simpsondouble.m with $f(x, y)=e^{-(x+y)}$, $c(x)=x^{2}, d(x)=\sqrt{x}, a=0, b=1, n=m=14$.
Then, $\iint_{R} e^{-(x+y)} d y d x \approx 0.1479103$
According to Mathematic, $\iint_{R} e^{-(x+y)} d y d x=0.14947753$

