Math 128A: Worksheet \#9

Name: \qquad Date: November 2, 2020

Fall 2020

Problem 1 (4.9, \#1c). Use the Composite Simpson's rule with $n=8$ to approximate

$$
\int_{1}^{2} \frac{\ln x}{(x-1)^{1 / 5}} d x
$$

Problem 2. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous and differentiable. Show that $\left|f^{\prime}(x)\right| \leq L$ for all $x \in \mathbb{R}$ if and only if f is Lipschitz continuous with Lipschitz constant L.

Problem 3. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipshitz continuous, then f is continuous.

Problem $4(5.1, \# 4 b)$. Let $f(t, y)=\frac{1+y}{1+t}$.

1. Does f satisfy a Lipschitz condition on $D=\{(t, y): 0 \leq t \leq 1,-\infty<y<\infty\}$.
2. Can Theorem 5.4 and 5.6 be used to show that the initial value problem

$$
y^{\prime}=f(t, y), \quad 0 \leq t \leq 1, \quad y(0)=1
$$

has a unique solution and is well-posed?

