Math 128A: Worksheet #9

 Name:
 Date:
 November 2, 2020

Fall 2020

Problem 1 (4.9, #1c). Use the Composite Simpson's rule with n = 8 to approximate

$$\int_{1}^{2} \frac{\ln x}{(x-1)^{1/5}} dx. \qquad \left| n \left(1+u \right) = u - \frac{u^{2}}{2} + \frac{u^{3}}{3} - \frac{u^{4}}{4} + \dots \right| \\ \text{She gularity at } x = 1: \quad \text{Want } H - \text{th Taylor polynomial of In(X) around } x = 1. \\ \ln(x) = \ln(1+(x-1)) = (x-1) - \frac{(x-1)^{2}}{2} + \frac{(x-1)^{3}}{3} - \frac{(x-1)^{4}}{4} + \dots \\ \text{Py}(x) = (x-1) - \frac{(x-1)^{2}}{2} + \frac{(x-1)^{9}}{5} - \frac{(x-1)^{4}}{4} + \dots \\ \text{First integrate} \\ \int_{1}^{2} \frac{P_{4}(x)}{(x-1)^{95}} dx = \int_{1}^{2} \left((x-1)^{445} - \frac{(x-1)^{945}}{2} + \frac{(x-1)^{945}}{3} - \frac{5}{24} \frac{(x-1)^{945}}{4} \right) dx \\ = \left[\frac{5}{9} (x-1)^{95} - \frac{5}{14} \frac{(x-1)^{945}}{2} + \frac{5}{19} \frac{(x-1)^{945}}{3} - \frac{5}{24} \frac{(x-1)^{245}}{4} \right]_{1}^{2} \\ = \left[\frac{5}{9} - \frac{5}{28} + \frac{5}{19.3} - \frac{5}{24.4} \right] \approx 0.412620092 \\ \text{Now, define} \\ G(x) = \begin{cases} \frac{\ln(x) - P_{4}(x)}{(x-1)^{195}} & 1 < x \leq 2 \\ 0 & X = 1 \end{cases}$$
Then, using Composite Simpson's with $n = 8$ $\left(h = \frac{2-1}{8} = \frac{1}{8} \right)$:

$$\int_{1}^{2} G(x) dx \approx 0.0203547013.$$

Thus,

$$\int_{1}^{2} \frac{\ln(x)}{(x-N^{1/5})} dx = \int_{1}^{2} G(x) dx + \int_{1}^{2} \frac{P_{4}(x)}{(x-N^{1/5})} dx$$

$$\approx 0.0203547013 + 0.4126200919 = 0.4329747932$$

 $|f(t,y_1) - f(t,y_2)| \le L|y_1 - y_2|$ $|f(x) - f(y_2)| \le L|x - y|$

Problem 2. Consider a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous and differentiable. Show that $|f'(x)| \leq L$ for all $x \in \mathbb{R}$ if and only if f is Lipschitz continuous with Lipschitz constant L.

First, suppose
$$|S'(x)| \leq L$$
 for all x. Now, let x, y \in R. Then, by the
Mean Value Theorem,
 $F(x) - F(y) = S'(S)(x-y)$ for some $S \in (x,y)$.
Thus, $|S(x) - S(y)| = |S'(S)| |x-y| \leq L|x-y|$,
so S is Lipschitz continuous with Lipschitz constant L.
Now, suppose that S is Lipschitz continuous with Lipschitz constant L.
Then, $\forall x \in R$,
 $|S'(x)| = \left| \lim_{h \to 0} \frac{S(x+h) - S(x)}{h} \right| = \lim_{h \to 0} \frac{|S(x+h) - S(h)|}{|h|}$
 $\leq \lim_{h \to 0} \frac{L|(x+h) - x|}{|h|} = \lim_{h \to 0} \frac{L||h|}{|h|} = \lim_{h \to 0} L = L$

Thus, IS'(X)I=L YXER.

Problem 3. Show that if $f : \mathbb{R} \to \mathbb{R}$ is Lipshitz continuous, then f is continuous.

Suppose
$$f$$
 is Lipschiftz continuous, so $\forall x, y \in \mathbb{R}$, $|f(x) - f(y)| \le L|x-y|$.
Now, let $x \in \mathbb{R}$ and $\varepsilon > 0$. Then, let $\delta = \frac{\varepsilon}{L}$. Then, $\forall y \in \mathbb{R}$ with $|x-y| < \delta$,
 $|f(x) - f(y)| \le L|x-y| < L\delta = L \cdot \frac{\varepsilon}{L} = \varepsilon$.

Hence, we have that I is continuous.

In fact, f is uniformly continuous since the
$$\delta$$
 doesn't depend on x:
Let $\varepsilon > 0$ and $\delta = \frac{\varepsilon}{2}$. Then $\forall x, y \in \mathbb{R}$ s.t. $|x-y| < \delta$, $|S(\lambda) - \delta(y)| < \varepsilon$.

Student solution:
We have
$$|f(x) - f(y)| \le L|x - y|$$
. We want to show that as $|x - y| \rightarrow 0$.
 $|f(x) - f(y)| \rightarrow 0$. This follows immediately.
(i) Lipschitz means $0 \le |f(x) - f(y)| \le L|x - y|$
 $\stackrel{\circ}{\cup} \le \stackrel{\circ}{\cup} \le \stackrel{\circ}{\cup} \le \stackrel{\circ}{\cup}$

(2) continuity means that IS(x)-Sly) -> O as 1x-y1-> O

Problem 4 (5.1, #4b). Let $f(t, y) = \frac{1+y}{1+t}$.

- 1. Does f satisfy a Lipschitz condition on $D = \{(t, y) : 0 \le t \le 1, -\infty < y < \infty\}.$
- 2. Can Theorem 5.4 and 5.6 be used to show that the initial value problem

$$y' = f(t, y), \quad 0 \le t \le 1, \quad y(0) = 1,$$

has a unique solution and is well-posed?

1. First,
$$\frac{\partial f}{\partial y}(t,y) = \frac{1}{1+t}$$
. Thus, on D ,
 $\left|\frac{\partial f}{\partial y}(t,y)\right| = \frac{1}{1+t} \leq \frac{1}{1} = 1$ since $0 \leq t \leq 1$.
Hence, by Theorem 5.3, f is Lipschitz in y on D with Lipschitz constant $L=1$.

2. Since S is continuous (in both y and t) on D, Theorem 5.4 and 5.6 imply that the initial value problem has a unique solution and is well-posed, respectively.

Example of function
$$f$$
 which is Lipschitz in y but not continuous:
Let $D = \tilde{z}(t, y)$: $O \leq t \leq 1, -\infty < y < \infty \tilde{z}$. Let $f(t, y) = g(t) \cdot y$
where $g(t) = \tilde{z}(0, 0 = t < 0.5)$
Then, f is clearly not continuous in both (t, y) due to the discontinuity of g .
Still, $\frac{\partial f}{\partial y}(t, y) = g(t)$, so $\left|\frac{\partial f}{\partial y}(t, y)\right| = |g(t)| \leq 1 = L$
Thus, by Theorem 5.3, for Lipschitz inty on D with Lipschitz constant L=1.