\qquad

Problem $1(4.9, \# 1 \mathrm{c})$. Use the Composite Simpson's rule with $n=8$ to approximate

$$
\int_{1}^{2} \frac{\ln x}{(x-1)^{1 / 5}} d x . \quad \ln (1+u)=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\frac{u^{4}}{4}+\cdots
$$

Singularity at $x=1$: Want 4-th Taylor polynomial of $\ln (x)$ around $x=1$.

$$
\begin{aligned}
& \ln (x)=\ln (1+(x-1))=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots \\
& P_{4}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}
\end{aligned}
$$

First integrate

$$
\begin{aligned}
\int_{1}^{2} \frac{P_{4}(x)}{(x-1)^{1 / 5}} d x & =\int_{1}^{2}\left((x-1)^{4 / 5}-\frac{(x-1)^{9 / 5}}{2}+\frac{(x-1)^{19 / 5}}{3}-\frac{(x-1)^{19 / 5}}{4}\right) d x \\
& =\left[\frac{5}{9}(x-1)^{9 / 5}-\frac{5}{14} \frac{(x-1)^{14 / 5}}{2}+\frac{5}{19} \frac{(x-1)^{19 / 5}}{3}-\frac{5}{24} \frac{(x-1)^{21 / 5}}{4}\right]_{1}^{2} \\
& =\left[\frac{5}{9}-\frac{5}{28}+\frac{5}{19 \cdot 3}-\frac{5}{24 \cdot 4}\right] \approx 0.412620092
\end{aligned}
$$

Now, define

$$
G(x)=\left\{\begin{array}{cc}
\frac{\ln (x)-P_{4}(x)}{(x-1)^{1 / s}} & 1<x \leq 2 \\
0 & x=1
\end{array}\right.
$$

Then, using Composite Simpson's with $n=8 \quad\left(h=\frac{2-1}{8}=\frac{1}{8}\right)$:

$$
\int_{1}^{2} G(x) d x \approx 0.0203547013
$$

Thus,

$$
\begin{aligned}
\int_{1}^{2} \frac{\ln (x)}{(x-1)^{1 / 5}} d x & =\int_{1}^{2} G(x) d x+\int_{1}^{2} \frac{P_{4}(x)}{(x-1)^{1 / 5}} d x \\
& \approx 0.0203547013+0.4126200919=0.4329747932
\end{aligned}
$$

$$
\begin{aligned}
& \left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{2}-y_{2}\right| \\
& |f(x)-f(y)| \leq L|x-y|
\end{aligned}
$$

Problem 2. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous and differentiable. Show that $\left|f^{\prime}(x)\right| \leq L$ for all $x \in \mathbb{R}$ if and only if f is Lipschitz continuous with Lipschitz constant L.

First, suppose $\left|f^{\prime}(x)\right| \leq L$ for all x. Now, let $x, y \in \mathbb{R}$. Then, by the Mean Value Theorem,

$$
f(x)-f(y)=f^{\prime}(\xi)(x-y) \text { for some } \xi \in(x, y) \text {. }
$$

Thus,

$$
|f(x)-f(y)|=\left|f^{\prime}(\xi)\right||x-y| \leq L|x-y|
$$

so f is Lipschitz continuous with Lipschitz constant L.

Now, suppose that f is Lipschitz continuous with Lipschitz constant L.
Then, $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
\left|f^{\prime}(x)\right| & =\left|\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right|=\lim _{h \rightarrow 0} \frac{|f(x+h)-f(x)|}{|h|} \\
& \leq \lim _{h \rightarrow 0} \frac{L|(x+h)-x|}{|h|}=\lim _{h \rightarrow 0} \frac{L|h|}{|h|}=\lim _{h \rightarrow 0} L=L
\end{aligned}
$$

Thus, $\left|f^{\prime}(x)\right| \leq L \quad \forall x \in \mathbb{R}$.

Problem 3. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipshitz continuous, then f is continuous.
Suppose f is Lipschitz continuous, so $\forall x, y \in \mathbb{R},|f(x)-f(y)| \leq L|x-y|$.
Now, let $x \in \mathbb{R}$ and $\varepsilon>0$. Then, let $\delta=\frac{\varepsilon}{L}$. Then, $\forall y \in \mathbb{R}$ with $|x-y|<\delta$,

$$
|f(x)-f(y)| \leq L|x-y|<L \delta=L \cdot \frac{\varepsilon}{L}=\varepsilon .
$$

Hence, we have that f is continuous.

In fact, f is uniformly continuous since the δ doesn't depend on x : Let $\varepsilon>0$ and $\delta=\frac{\varepsilon}{L}$. Then $\forall x, y \in \mathbb{R}$ s.t. $|x-y|<\delta, \quad|f(x)-f(y)|<\varepsilon$.

Student solution:
We have $|f(x)-f(y)| \leq L|x-y|$. We want to show that as $|x-y| \rightarrow 0$ $|f(x)-f(y)| \rightarrow 0$. This follows imme drately.
(i) Lipschitz means $0 \leq|f(x)-f(y)| \leq L|x-y|$

(2) continuity means that $|f(x)-s(y)| \rightarrow 0$ as $|x-y| \rightarrow 0$

Problem 4 (5.1, \#4b). Let $f(t, y)=\frac{1+y}{1+t}$.

1. Does f satisfy a Lipschitz condition on $D=\{(t, y): 0 \leq t \leq 1,-\infty<y<\infty\}$.
2. Can Theorem 5.4 and 5.6 be used to show that the initial value problem

$$
y^{\prime}=f(t, y), \quad 0 \leq t \leq 1, \quad y(0)=1
$$

has a unique solution and is well-posed?

1. First, $\frac{\partial f}{\partial y}(t, y)=\frac{1}{1+t}$. Thus, on D,

$$
\left|\frac{\partial f}{\partial y}(t, y)\right|=\frac{1}{1+t} \leq \frac{1}{1}=1 \quad \text { since } 0 \leq t \leq 1 \text {. }
$$

Hence, by Theorem 5.3, f is Lipschitz in y on D with Lipschitz constant $L=1$.
2. Since δ is continuous (in bothy and t) on D, Theorem 5.4 and 5.6 imply that the initial value problem has a unique solution and is weth-posed, respectively.

Example of function f which is Lipschitz in y but not continuous:
Let $D=\{(t, y): 0 \leq t \leq 1,-\infty<y<\infty\}$. Let $f(t, y)=g(t) \cdot y$ where $g(t)=\left\{\begin{array}{ll}0, & 0 \leqslant t \leqslant 0.5 \\ 1, & t>0.5\end{array}\right.$.
Then, f is clearly not continuous in both (t, y) due to the discontinuity of g. Still, $\frac{\partial f}{\partial y}(t, y)=g(t)$, so $\left|\frac{\partial f}{\partial y}(t, y)\right|=|g(t)| \leq 1=L$
Thus, by Theorem 5.3, fir Lipschitz ing on D with Lipschitz constant $L=1$.

