## Math 128A: Worksheet \#11

Name: __ Date: November 16, 2020
Fall 2020
Problem 1. Derive the Adams-Moulton two-step method using divided differences for the interpolating polynomial.

Problem 2 (5.10, \#4-ish). Consider the following multistep method to solve the differential equation:

$$
w_{i+1}=4 w_{i}-3 w_{i-1}-2 h f\left(t_{i-1}, w_{i-1}\right)
$$

Analyze this method for consistency, stability, and convergence.

Problem 3 (5.10, \#7). Investigate stability for the difference method

$$
w_{i+1}=-4 w_{i}+5 w_{i-1}+2 h\left[f\left(t_{i}, w_{i}\right)+2 h f\left(t_{i-1}, w_{i-1}\right)\right]
$$

for $i=1,2, \ldots, N-1$, with starting values $w_{0}, w_{1}$.

Problem 4. Find the region of absolute stability (RAS) for the midpoint method:

$$
w_{i+1}=w_{i}+h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{h}{2} f\left(t_{i}, w_{i}\right)\right) .
$$

Plot the RAS using Matlab.

