Math 128A: Worksheet \#12

Name: \qquad Date: November 23, 2020
Fall 2020
Problem 1. The Implicit Midpoint method for solving a differential equation $y^{\prime}(t)=f(t, y(t))$ is given by

$$
w_{i+1}=w_{i}+h f\left(t_{i}+\frac{h}{2}, \frac{w_{i}+w_{i+1}}{2}\right)
$$

Show that the Implicit Midpoint method is A-stable.

Problem 2. Consider the following system of linear equations

$$
\left\{\begin{array}{r}
x_{1}+x_{2}-x_{3}=0 \\
12 x_{2}-x_{3}=4 \\
2 x_{1}+x_{2}+x_{3}=5
\end{array}\right.
$$

Solve this system using Gauss elimination and Gauss elimination with partial pivoting. How many row interchanges do you need in each case?

Problem 3. Let A and B be $\ell \times m$ matrices and C be a $m \times n$ matrix. How many additions and multiplications are necessary to compute $A+B$ and $A C$ if we compute the sum and the product directly following the definition?

Problem 4. Let A and B be two $m \times m$ matrices and suppose that $A B$ is invertible. Show that both A and B are invertible.

