\qquad

Problem 1. The Implicit Midpoint method for solving a differential equation $y^{\prime}(t)=f(t, y(t))$ is given by

$$
w_{i+1}=w_{i}+h f\left(t_{i}+\frac{h}{2}, \frac{w_{i}+w_{i+1}}{2}\right)
$$

Show that the Implicit Midpoint method is A-stable.
Model problem: $y^{\prime}=\lambda y=: \delta(t, y)$ - exact solution is $y(t)=e^{\lambda t}$

$$
\begin{aligned}
& \omega_{i+1}=\omega_{i}+h f\left(t_{i}+\frac{h}{2}, \frac{\omega_{i}+\omega_{i+1}}{2}\right)=\omega_{i}+\frac{h \lambda}{2}\left(\omega_{i}+\omega_{i+1}\right) \\
&=\left(1+\frac{h \lambda}{2}\right) \omega_{i}+\frac{h \lambda}{2} \omega_{i+1} \\
&\left(1-\frac{h \lambda}{2}\right) \omega_{i+1}=\left(1+\frac{h \lambda}{2}\right) \omega_{i} \Rightarrow \omega_{i+1}=\frac{\left(1+\frac{h \lambda}{2}\right)}{\left(1-\frac{h \lambda}{2}\right)} \omega_{i} \text {, so } Q(z)=\frac{1+\frac{z}{2}}{1-\frac{z}{2}}
\end{aligned}
$$

Looking for: $\omega_{i+1}=Q(h \lambda) \omega_{i}=\ldots=Q(h \lambda)^{i+1} \omega_{0} \Rightarrow \operatorname{RAS}=\{z \in \mathbb{C}:|Q(z)|<1\}$
Letting $z=x+i y$,

$$
\begin{aligned}
|Q(z)|<1 & \Leftrightarrow \frac{\left|1+\frac{z}{2}\right|}{\left|1-\frac{z}{2}\right|}<|\Leftrightarrow| 1+\frac{z}{2}\left|<\left|1-\frac{z}{2}\right| \Leftrightarrow\right| 1+\left.\frac{z}{2}\right|^{2}<\left|1-\frac{z}{2}\right|^{2} \\
& \Leftrightarrow\left|1+\frac{x}{2}+i \frac{y}{2}\right|^{2}<\left|1-\frac{x}{2}-i \frac{y}{2}\right|^{2} \Leftrightarrow\left(1+\frac{x}{2}\right)^{2}+\left(\left.\frac{y}{2}\right|^{2}<\left(1-\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}\right. \\
& \Leftrightarrow x+x+\frac{x^{2}}{4}<x-x+\frac{x^{2}}{4} \Leftrightarrow 2 x<0 \Leftrightarrow x<0
\end{aligned}
$$

Thus, $|Q(z)|<1$ exactly when $x=\operatorname{Re}(z)<0$. Thus, the regrow of absolute stability $R A S=\mathbb{C}^{-}$. This, the method is A-stable. (require $\mathbb{C}^{-} \subset R A S$)

Problem 2. Consider the following system of linear equations

$$
\left\{\begin{array}{r}
x_{1}+x_{2}-x_{3}=0 \\
12 x_{2}-x_{3}=4 \\
2 x_{1}+x_{2}+x_{3}=5
\end{array}\right.
$$

Solve this system using Gauss elimination and Gauss elimination with partial pivoting. How many row interchanges do you need in each case?
GE:

$$
\left(\begin{array}{ccc:c}
1 & 1 & -1 & 0 \\
0 & 12 & -1 & 4 \\
2 & 1 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & 1 & -1 & 0 \\
0 & 12 & -1 & 4 \\
0 & -1 & 3 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & 1 & -1 & 0 \\
0 & 12 & -1 & 4 \\
0 & 0 & \frac{35}{12} & \frac{64}{12}
\end{array}\right)
$$

No row interchanges!

$$
\left.\Rightarrow \begin{array}{l}
\frac{35}{12} x_{3}=\frac{64}{12} \Rightarrow x_{3}=\frac{64}{35} \\
12 x_{2}-x_{3}=4 \Rightarrow 12 x_{2}=x_{3}+4=\frac{204}{35} \\
x_{1}+x_{2}-x_{3}=0 \Rightarrow x_{1}=x_{3}-x_{2}=\frac{47}{35}
\end{array} \Rightarrow x_{2}=\frac{17}{35}\right\} \Rightarrow \begin{aligned}
& x_{1}=\frac{47}{35} \\
& x_{2}=\frac{17}{35} \\
& x_{3}=\frac{64}{35}
\end{aligned}
$$

GE wI partial pivoting:

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 0 \\
0 & 12 & -1 & 4 \\
2 & 1 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
2 & 1 & 1 & 5 \\
0 & 12 & -1 & 4 \\
1 & 1 & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
2 & 1 & 1 & 5 \\
0 & 12 & -1 & 4 \\
0 & \frac{1}{2} & -\frac{3}{2} & -\frac{5}{2}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc:c}
2 & 1 & 1 & 5 \\
0 & 12 & -1 & 4 \\
0 & 0 & \frac{-35}{24} & \frac{-64}{24}
\end{array}\right) \\
& \text { One row interchange! (marked *) } \\
& \left.\Rightarrow \begin{array}{l}
-\frac{35}{24} x_{3}=-\frac{64}{24} \Rightarrow x_{3}=\frac{64}{35} \\
12 x_{2}-x_{3}=4 \Rightarrow 12 x_{2}=x_{3}+4=\frac{204}{35} \Rightarrow x_{2}=\frac{17}{35} \\
2 x_{1}+x_{2}+x_{3}=5 \Rightarrow 2 x_{1}=5-x_{2}-x_{3}=\frac{94}{35} \Rightarrow x_{1}=\frac{47}{35}
\end{array}\right\} \Rightarrow \begin{array}{l}
x_{1}=\frac{47}{35} \\
x_{2}=\frac{17}{35} \\
x_{3}=\frac{64}{35}
\end{array}
\end{aligned}
$$

Problem 3. Let A and B be $\ell \times m$ matrices and C be a $m \times n$ matrix. How many additions and multiplications are necessary to compute $A+B$ and $A C$ if we compute the sum and the product directly following the
$A+B: \quad(A+B)_{i j}=A_{i j}+B_{i j} \leftarrow 1$ addition perentry $l \times m$ matrix \Rightarrow lmentries \Rightarrow total: lm additions
$A C: \quad(A C)_{i j}=\sum_{k=1}^{m} A_{i k} \cdot C_{k j}<{ }^{<}$multiplies: m multiplies
$A C$ is $l \times n$ matrix $\Rightarrow \ln$ entries \Rightarrow Total $: \ln (m-1)$ adds lam multiplies $\approx 2 \operatorname{lnm}$ operations

Problem 4. Let A and B be two $m \times m$ matrices and suppose that $A B$ is invertible. Show that both A and B are invertible.
C is invertible (nonsingular) $\Leftrightarrow \operatorname{det} C \neq 0$
Since $A B$ is invertible, $\operatorname{det}(A B) \neq 0$. Now, $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$. Thus, $\operatorname{det} A \neq 0$ and $\operatorname{det} B \neq 0$. Hence, A and B ave invertible.

Discussion of Linear Algebra
Solving $A x=b$, when do you have no solutions, one exact solution, or in finitely many solutions:
If A is invertible (it has to be square: \# of equations = \#ofunknewns),

$$
A^{-1}(A x)=A^{-1} b \Rightarrow x=A_{\hat{\imath}}^{-1} b
$$

Infinitely many solutions: system of equations is underdetermoned
$\rightarrow A x=b, \quad A$ is $n \times m, \quad n<m \Rightarrow$ infinitely many
\rightarrow can get no solutions if equations are not compatible

- A has a null-space with $\operatorname{dim} \geq 1$: there are infinitely many vectors y s.t. $\quad A_{y}=0$.

Square-case but not invertible \Rightarrow some of the equations amount to saying the same thing \rightarrow reduced to a rectangular matrix that is under determined
\rightarrow can also have no solutions (equations can be not compatible) - this is a property depending on $A \& b$.

When square:
nonsingular $\rightarrow \operatorname{det} A \neq 0 \Rightarrow$ invertible \leftarrow one solution singular $\rightarrow \operatorname{det} A=0 \Rightarrow$ not invertible, so at least one of the rows of A can be written in terms of the others

- infinitely many or zero solutions

Different Pivoting Strategies
Gaussian elimination $(G E) \rightarrow$ only exchange rows when avoiding a 0 . GE w/ partial pivoting \rightarrow exchange rows to always get maximum pivot
GE wI scaled partial pivoting \rightarrow exchange rows to get maximum scaled proof. However, you don't actually scale the rows \rightarrow affects how youchoose which rows to interchange, but doesn't scale matrix

Solving Systems of Equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}=b_{2} \\
\frac{a_{21}}{a_{11}} \cdot\left(a_{11} x_{1}+a_{12} x_{2}\right)=b_{1} \cdot \frac{a_{21}}{a_{11}} \\
a_{21} x_{1}+\frac{a_{12} \cdot a_{21}}{a_{11}} x_{2}=\frac{b_{1} a_{21}}{a_{11}} \\
\\
a_{21} x_{1}+a_{22} x_{2}=b_{2} \\
\rightarrow \\
a_{21} x_{1}+a_{22} x_{2}-\frac{b_{1} a_{21}}{a_{11}}=b_{2}-\frac{b_{1} a_{21}}{a_{11}} \\
\text { substitute } \rightarrow \\
\\
\\
a_{21} x_{1}+a_{22} x_{2}-\left(a_{22} x_{1}+\frac{a_{12} a_{21}}{a_{11}} x_{2}\right)=b_{2}-\frac{b_{1} a_{21}}{a_{11}} \\
\\
\quad\left(a_{22}-\frac{a_{12} a_{21}}{a_{11}}\right) x_{2}=b_{2}-\frac{b_{11} a_{21}}{a_{11}}
\end{gathered}
$$

Direct technique: $x=A^{-1} b$,

$$
\left(\begin{array}{cc}
* & 0 \\
* & \\
*
\end{array}\right) x=b
$$

\rightarrow usually find de comp. of A, e.g. $A=L U$
\rightarrow directly solve equation, eq. forward \& backward substitution
Iterative technique: start with guess x_{0} to $x=A^{-1} b$

- some how get x_{k} depending on x_{k-1} (ormaybe other previous x_{i} 's)
- sequence x_{k} converges to actual solution $x=A^{-1} b$
- stop when the estimate is "good enough": $A x_{k}-b \approx 0$

Preconditioners for $A x=b$

- condition number: $K(A) \rightarrow$ larger means harder problem
- pie conditioner $M:(i)$ want solving $M_{y}=c$ to be easy.
(ii) $M^{-1} A$ has a smaller condition number than A

$$
\begin{aligned}
\Rightarrow M^{-1} A x & =\underbrace{M^{-1} b}_{\text {want to compute this wi low effort }} \\
\left(M^{-1} A\right) x & =d \text {, where } d=M^{-1} b
\end{aligned}
$$

