Math 128A: Worksheet #13

 Name:
 Date:
 November 30, 2020

 Fall 2020

Problem 1. Show that the product of two $n \times n$ lower-triangular matrices is lower triangular.

Problem 2. Show that the inverse of a non-singular $n \times n$ lower-triangular matrix is lower triangular.

Problem 3. Use mathematical induction to show that when n > 1, the evaluation of the determinant of an $n \times n$ matrix using the definition requires

$$n! \sum_{k=1}^{n-1} \frac{1}{k!}$$
 multiplications/divisions and $n! - 1$ additions/subtractions.

- **Problem 4.** 1. Show that solving Ax = b by first factoring into A = LU and then solving Ly = b and Ux = y requires the same number of operations as the Gaussian Elimination Algorithm 6.1
 - 2. Count the number of operations required to solve m linear systems $Ax^{(k)} = b^{(k)}$ for k = 1, ..., m by first factoring A and then using the method of part (c) m times. Compare this to doing Gaussian Elimination m times.

Problem 5. MATLAB demo of LU factorizations and how pivoting is ingrained in the lu(A).