\qquad

Problem 1. Show that the product of two $n \times n$ lower-triangular matrices is lower triangular.

Suppose A and B are lower triangular, so for $j>i, A_{i j}=B_{i j}=0$. Then, for $j>i$

$$
\begin{aligned}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} & =\sum_{k=1}^{i} A_{i k} B_{k j}=\sum_{k=1}^{i} A_{i k} \cdot 0=0 \\
A_{i k} & =0 \text { for } k \geq i \quad \text { for } k=1, \ldots, j, k \leq i<j, s 0 \\
B_{k j} & =0
\end{aligned}
$$

Thus, $A B$ is lower triangular.

Problem 2. Show that the inverse of a non-singular $n \times n$ lower-triangular matrix is lower triangular.
We prove this by induction on n. For $n=1$, it is obvious (every $|x|$ matrix is lower triangular) For $n=2$, if L is lower triangular, then L has the form $L=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$. Notice, $\operatorname{det} L=a d$, and since L is nonsingular, $\operatorname{det} L \neq 0$. Thus, $a d \neq 0$. Now, $L^{-1}=\frac{1}{a d}\left(\begin{array}{cc}d & 0 \\ -c & a\end{array}\right)$ which is lower triangular.
Induction hypothesis: for all $k \leq n$, the inverse of a $k \times k$ nonsingular lower triangular matrix is lower triangular.
Now, let L be a $(n+1) \times(n+1)$ nonsingular lower triangular matrix. Then, we can write

$$
L=\left(\begin{array}{cc}
L_{n} & 0 \\
\vec{V}^{\top} & 0 \\
l_{n+1, n+1}
\end{array}\right)^{n}
$$

where $\vec{v}^{T}=\left(\ell_{n+1}, \cdots \ell_{n+1, n}\right)$ is a $1 \times n$ vector and L_{n} is an $n \times n$ lower triangular matrix. Now, write L^{-1} in the same block structure:

$$
L^{-1}=\left(\begin{array}{cc}
A & \vec{b} \\
\vec{c}^{\top} & d
\end{array}\right)
$$

where A is a $n \times n$ matrix, \vec{b}, \vec{c} are $n x l$ vectors, and d is a scalar. Then

$$
\left(\begin{array}{cc}
I_{n}^{n} & 0 \\
0 & 1
\end{array}\right)=I_{n+1}=L^{-1} L=\left(\begin{array}{cc}
A & \vec{b} \\
\vec{c}^{\top} & d
\end{array}\right)\left(\begin{array}{cc}
L_{n} & O \\
\vec{v}^{\top} l_{n n, n+1}
\end{array}\right)=\left(\begin{array}{cc}
A L_{n}+\vec{b} \vec{v}^{\top} & l_{n+n, n+1} \vec{b} \\
\vec{c}^{\top} L_{n}+d \vec{v}^{\top} & d l_{n+1, n+1}
\end{array}\right) .
$$

Then, $l_{n+1, n+1} \vec{b}=0$, so we must have $\vec{b}=0$ since $l_{n+, n+1} \neq 0$ as L is nonsingular.
Also, we have $I_{n}=A L_{n}+\vec{b} \vec{v}^{\top}=A L_{n}$, so $A=L_{n}^{-1}$. Hence, by the induction hypothesis, A is lower triangular. Thus,

$$
L^{-1}=\left(\begin{array}{cc}
A & 0 \\
\vec{c}^{\top} & d
\end{array}\right)
$$

is lower triangular.
Hence, by induction, we have that the inverse of a nonsingular lower triangular matrix is lower triangular.

Problem 3. Use mathematical induction to show that when $n>1$, the evaluation of the determinant of an $n \times n$ matrix using the definition requires

$$
n!\sum_{k=1}^{n-1} \frac{1}{k!} \text { multiplications/divisions and } n!-1 \text { additions/subtractions. }
$$

Base case: $n=2$. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\operatorname{det} A=a d-b c$, requires 2 multiplications/divisions and 1 addition subtraction. Now

$$
\begin{aligned}
& n!\sum_{k=1}^{n-1} \frac{1}{k!}=2!\sum_{k=1}^{1} \frac{1}{k!}=2!\left(\frac{1}{1!}\right)=2 \\
& n!-1=2!-1=2-1=1
\end{aligned}
$$

Induction hypothesis: Suppose that evaluating the determinant of an $n \times n$ matrix requires $n!\sum_{k=1}^{n-1} \frac{1}{k!}$ multiplications/divistons and $n!-1$ additions subtractions.
Now, let A be an $(n+1) \times(n+1)$ matrix. Then, $\operatorname{det} A=\sum_{i=1}^{n+1}(-1)^{i+j} a_{i j} M_{i j}$. Here, each $M_{i j}$ is the determinant of an $n \times n$ matrix, which takes $n!\sum_{k=1}^{n-1} \frac{1}{k!}$ mult/div and $n!-1$ add/subtr.
Thus, $\operatorname{det} A$ takes $(n+1)\left(1+n!\sum_{i=1}^{n!} \frac{1}{k!}\right)$ multi div and $(n+1)(n!-1)+n$ add/subtr. Now,

$$
\begin{aligned}
& (n+1)\left(1+n!\sum_{k=1}^{n-1} \frac{1}{k!}\right)=(n+1)+(n+1) n!\sum_{k=1}^{n-1} \frac{1}{k!}=(n+1)!\frac{1}{n!}+(n+1)!\sum_{k=1}^{n-1} \frac{1}{k!}=(n+1)!\left(\frac{1}{n!}+\sum_{k=1}^{n-1} \frac{1}{k!}\right)=(n+1)!\sum_{k=1}^{n} \frac{1}{k!} \text {, as desired. } \\
& (n+1)(n!-1)+n=(n+1) n!-(n+1)+n=(n+1)!-1 \text {, as desired. }
\end{aligned}
$$

Hence, by induction, we have the result.

Problem 4. 1. Show that solving $A x=b$ by first factoring into $A=L U$ and then solving $L y=b$ and $U x=y$ requires the same number of operations as the Gaussian Elimination Algorithm 6.1
2. Count the number of operations required to solve m linear systems $A x^{(k)}=b^{(k)}$ for $k=1, \ldots, m$ by first factoring A and then using the method of part (c) m times. Compare this to doing Gaussian Elimination m times.

1. We first have that LII factorization requires $\frac{1}{3} n^{3}-\frac{1}{3} n$ mult//div. and $\frac{1}{3} n^{3}-\frac{1}{2} n^{2}+\frac{1}{6} n$ add/subtr. Then, solving $L_{y}=b$ (where $l_{i i}=1$ for all i) takes $\frac{1}{2} n^{2}-\frac{1}{2} n$ mult/div and $\frac{1}{2} n^{2}-\frac{1}{2} n$ add/subtr. Finally, solving $U_{x}=y$ takes $\frac{1}{2} n^{2}+\frac{1}{2} n$ mult/div and $\frac{1}{2} n^{2}-\frac{1}{2} n$ add/div. Thus in total:
\# mult|div: $\frac{1}{3} n^{3}-\frac{1}{3} n+\frac{1}{2} n^{2}-\frac{1}{2} n+\frac{1}{2} n^{2}+\frac{1}{2} n=\frac{1}{3} n^{3}+n^{2}-\frac{1}{3} n$
\# add/subtr: $\frac{1}{3} n^{3}-\frac{1}{2} n^{2}+\frac{1}{6} n+\frac{1}{2} n^{2}-\frac{1}{2} n+\frac{1}{2} n^{2}-\frac{1}{2} n=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n$
This is the same as Gauss. Elim.
2. LU factorization once: $\frac{1}{3} n^{3}-\frac{1}{3} n$ mult/div and $\frac{1}{3} n^{3}-\frac{1}{2} n^{2}+\frac{1}{6} n$ add/subtr.
m solves $L_{y}(k)=b^{(k)}: m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)$ mult/div and $m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)$ add/subtr.
m solves $\ell_{x}{ }^{(k)}=y^{(k)}: m\left(\frac{1}{2} n^{2}+\frac{1}{2} n\right)$ mull $/ d_{i}$ and $m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)$ add/subtr.
total \#mult/div: $\frac{1}{3} n^{3}-\frac{1}{3} n+m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)+m\left(\frac{1}{2} n^{2}+\frac{1}{2} n\right)=\frac{1}{3} n^{3}+m n^{2}-\frac{1}{3} n$
total \#add/subtr: : $\frac{1}{3} n^{3}-\frac{1}{2} n^{2}+\frac{1}{6} n+m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)+m\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)=\frac{1}{3} n^{3}+\left(m-\frac{1}{2}\right) n^{2}-\left(m-\frac{1}{6}\right) n$

Gauss elim m times: \# mult/div: $m\left(\frac{1}{3} n^{3}+n^{2}-\frac{1}{3} n\right)=\frac{m}{3} n^{3}+m n^{2}-\frac{m}{3} n$

$$
\text { \# add/div: } m\left(\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n\right)=\frac{m}{3} n^{3}+\frac{m}{2} n^{2}-\frac{5}{6} m n
$$

Problem 5. MATLAB demo of $L U$ factorizations and how pivoting is ingrained in the $\mathrm{lu}(\mathrm{A})$.
See recording, and posted Matlab file on blourses.

