Math 128A: Worksheet \#1

Name: \qquad Date: January 27, 2021

Spring 2021
Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=e^{x}+x$. Show that f has exactly one root.

Problem 2 (Section 1.1, \#6c). Find $\max _{a \leq x \leq b}|f(x)|$ for the following functions and intervals.

$$
f(x)=x^{3}-4 x+2, \quad[1,2]
$$

Problem 3 (Section 1.1, \#13). Find the third Taylor polynomial $P_{3}(x)$ for the function $f(x)=(x-1) \ln (x)$ about $x_{0}=1$.
(a) Use $P_{3}(0.5)$ to approximate $f(0.5)$. Find an upper bound for error $\left|f(0.5)-P_{3}(0.5)\right|$ using the error formula and compare it to the actual error.
(b) Find a bound for the error $\left|f(x)-P_{3}(x)\right|$ in using $P_{3}(x)$ to approximate $f(x)$ on the interval [0.5, 1.5].

Problem 4 (Section 1.2, \#3a). Find the largest interval in which p^{*} must lie to approximate $p=150$ with relative error at most 10^{-3}.

Problem 5. Suppose that $\alpha_{n}=\alpha+\mathcal{O}\left(n^{-2}\right)$ as $n \rightarrow \infty$. Show that $\alpha_{n}=\alpha+\mathcal{O}\left(n^{-1}\right)$.

Problem 6 (Section 2.1, \#6a). Use the Bisection method to find a solution accurate to within 10^{-5} for the following problem:

$$
3 x-e^{x}=0 \text { for } 1 \leq x \leq 2
$$

