\qquad

Show f has at least one root: Use the IVT: if $f(a)$ and $f(b)$ have opposite sign (and δ is continuous), then $\exists \subset \in(a, b)$ such that

$$
\begin{aligned}
& f(c)=0 \\
& x=0: \quad f(0)=e^{0}+0=1>0 \\
& x=-1: \quad f(-1)=\underbrace{e^{-1}-1<1-1=0}_{<e^{0}=1}
\end{aligned}
$$

IVT $\Rightarrow \exists c \in(-1,0)$ s.t $f(c)=0$ (at least one root).
Show of has at most one root: Monotone functions can only hove one zero.

$$
f^{\prime}(x)=e^{x}+1>1>0 \text {, so our function is monotone }
$$

Use Rolle's Theorem to prove this:
Assume for contradiction that δ has more than one root, at let $x_{1} \neq x_{2}$ be two of them. (we can assume $x_{1}<x_{2}$). Then, $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, so by Roll's theorem, $\mathcal{F} \in \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}(c)=0$, but we know $f^{\prime}(c)=e^{c}+1>1$, a contradiction. This, f has exactly one root.

Problem 2 (Section 1.1, \#cu). Find $\max _{a \leq x \leq b}|f(x)|$ for the following functions and intervals.

$$
f(x)=x^{3}-4 x+2, \quad[1,2]
$$

$|f(x)|$ has a max at either a min or max of $f(x)$.
By the Extreme Value Theorem (EVT), the min and max of $f(x)$ on $[a, b]$ occur either at the endpoints, $x=a$ or $x=b$, or at critical points (where $f^{\prime}(x)=0$).

$$
f^{\prime}(x)=3 x^{2}-4=0 \Rightarrow 3 x^{2}=4 \Rightarrow x^{2}=\frac{4}{3} \Rightarrow x= \pm \frac{2 \sqrt{3}}{3}
$$

Now, $x=\frac{2 \sqrt{3}}{3} \approx 1.155$ is in our interval, so we check:

$$
\begin{aligned}
& x=1: \quad f(1)=1^{3}-4+2=-1 \\
& x=\frac{2 \sqrt{3}}{3}: f\left(\frac{2 \sqrt{3}}{3}\right)=\left(\frac{2 \sqrt{3}}{3}\right)^{3}-4 \cdot \frac{2 \sqrt{3}}{3}+2=-1.079 \\
& x=2: \quad f(2)=2^{3}-4 \cdot 2+2=2
\end{aligned}
$$

Thus, $\max _{1 \leq x=2}|f(x)|=2$

Taylor's Theorem: $f \in C^{n}[a, b]$ and $f^{(n+1)}$ exists on $[a, b], x_{0} \in[a, b]$ For all $x \in[a, b]$,

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

nth Taylor poly remainder

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x \sim x_{0}\right)^{2}+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

and $R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}$, where $\xi(x)$ is between x_{0} and x.

Example (pg 9-10 in textbook)

$$
\begin{gathered}
\quad \cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3} \sin (\xi(x)) \& x_{0}=0 \\
x \xrightarrow[\cos (0.01)]{\cos }=1-\frac{1}{2}(0.01)^{2}+\frac{1}{6}(0.01)^{3} \sin (\xi(0.01)) \\
\left|\cos (0.01)-\left(1-\frac{1}{2}(0.01)^{2}\right)\right|=\left|\frac{1}{6}(0.01)^{3} \sin (\xi(0.01))\right| \\
\text { exact approx }
\end{gathered}
$$

Want to bound $|\sin (\xi(0.01))|$ for error

$$
\begin{aligned}
|\sin (x)| \leq|x| & \Rightarrow|\sin (\xi(0.01))| \leq|\xi(0.01)| \\
|\sin (x)| \leq|x| & \Rightarrow|\sin (\xi(0.01))| \leq|\xi(0.01)| \leq 0.01
\end{aligned}
$$

Generalized Roll's with $n=2$, so $n+1=3$ points have equal y-value:

$$
\begin{aligned}
f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right) & =0 \\
f^{\prime \prime}\left(c_{3}\right) & =0
\end{aligned}
$$

Problem 3 (Section 1.1, \#13). Find the third Taylor polynomial $P_{3}(x)$ for the function $f(x)=(x-1) \ln (x)$ about $x_{0}=1$.
(a) Use $P_{3}(0.5)$ to approximate $f(0.5)$. Find an upper bound for error $\left|f(0.5)-P_{3}(0.5)\right|$ using the error formula and compare it to the actual error.
(b) Find a bound for the error $\left|f(x)-P_{3}(x)\right|$ in using $P_{3}(x)$ to approximate $f(x)$ on the interval $[0.5,1.5]$.
(a) $f(x)=(x-1) \ln (x)$. Find $P_{3}(x)$ centered at $x_{0}=1$.

$$
\begin{aligned}
& f\left(x_{0}\right)=f(1)=0 \\
& f^{\prime}\left(x_{0}\right)=\ln \left(x_{0}\right)+\frac{x_{0}-1}{x_{0}}=\ln \left(x_{0}\right)+1-\frac{1}{x_{0}}=0 \\
& f^{\prime \prime}\left(x_{0}\right)=\frac{1}{x_{0}}+\frac{1}{x_{0}^{2}}=2 \\
& f^{\prime \prime \prime}\left(x_{0}\right)=-\frac{1}{x_{0}^{2}}-\frac{2}{x_{0}^{3}}=-3
\end{aligned}
$$

$f^{(4)}(x)=\frac{2}{x^{3}}+\frac{6}{x^{4}}$ need to bound this,

$$
P_{3}(x)=\frac{2}{2!}(x-1)^{2}-\frac{3}{3!}(x-1)^{3}=(x-1)^{2}-\frac{1}{2}(x-1)^{3}
$$

$R_{3}(x)=\frac{f^{(4)}(\xi)}{4!}(x-1)^{4}, \quad \xi$ is between $x_{0}=1$ and x. $x=0.5:$

$$
\begin{aligned}
& P_{3}(0.5)=(0.5-1)^{2}-\frac{1}{2}(0.5-1)^{3}=\frac{1}{4}+\frac{1}{16}=\frac{5}{16}=0.3125 \\
& f(0.5)=(0.5-1) \ln (0.5)=0.346574
\end{aligned}
$$

Actual error: $\left|P_{3}(0.5)-f(0.5)\right|=0.034074$
Error bound: $\left|P_{3}(0.5)-f(0.5)\right|=\left|R_{3}(0.5)\right|=\frac{\left|f^{(4)}(\xi)\right|}{4!}(0.5-1)^{4}$

$$
\begin{gathered}
\text { Bound }\left|f^{(4)}(\xi)\right|: \quad f^{(4)}(\xi)=\frac{2}{\xi^{3}}+\frac{6}{\xi^{4}} \\
\left|f^{(4)}(\xi)\right| \leq \frac{2}{(0.5)^{3}}+\frac{6}{(0.5)^{4}}=112 \\
\left|R_{3}(0.5)\right| \leq \frac{112}{4!}(0.5-1)^{4}=0.292
\end{gathered}
$$

Error bound
(b) $\forall x \in[0,5,1.5]$,

$$
\left|f(x)-P_{3}(x)\right|=\left|R_{3}(x)\right|=\frac{\left|f^{(4)}(\xi(x))\right|}{4!}(x-1)^{4}
$$

Thus, $\left|f^{(4)}(\xi(x))\right|=\frac{2}{\xi^{3}}+\frac{6}{\xi^{4}} \leq \frac{2}{(0.5)^{3}}+\frac{6}{(0.5)^{4}}=112$.

Problem 3 (Section 1.1, \#13). Find the third Taylor polynomial $P_{3}(x)$ for the function $f(x)=(x-1) \ln (x)$ about $x_{0}=1$.
(a) Use $P_{3}(0.5)$ to approximate $f(0.5)$. Find an upper bound for error $\left|f(0.5)-P_{3}(0.5)\right|$ using the error formula and compare it to the actual error.
(b) Find a bound for the error $\left|f(x)-P_{3}(x)\right|$ in using $P_{3}(x)$ to approximate $f(x)$ on the interval [0.5, 1.5].
(b) $\forall x \in[0.5,1.5]$,

$$
\left|f(x)-P_{3}(x)\right|=\left|R_{3}(x)\right|=\frac{\left|\delta^{(4)}(\xi(x))\right|}{4!}(x-1)^{4}
$$

Since $\xi(x)$ is between x and $)$ and $x \in[0.5, .5]$, we know $\xi(x) \in[0.5,1.5]$

Thus, $\left|f^{(4)}(\xi(x))\right|=\frac{2}{\xi^{3}}+\frac{6}{\xi^{4}} \leq \frac{2}{(0.5)^{3}}+\frac{6}{(0.5)^{4}}=112$.

$$
\text { so, } \left.\downarrow \delta(x)-P_{6}(x)\right) \leq \frac{112}{4!}(x-1)^{4}=\frac{14}{3}(x-1)^{4} \leq \frac{14}{3}(0.5)^{4}=0.292 \text {. }
$$

Problem 4 (Section 1.2, \#as). Find the largest interval in which p^{*} must lie to approximate $p=150$ with relative error at most 10^{-3}.

We want relative error $=\frac{\left|p^{k}-p\right|}{|p|} \leq 10^{-3}$

$$
p=150 \Rightarrow \frac{\left|p^{*}-150\right|}{150} \leq 10^{-3} \Leftrightarrow\left|p^{*}-150\right| \leq 0.15
$$

Thus $\quad-0.15 \leq p^{*}-150 \leq 0.15 \Rightarrow 149.85 \leq p^{*} \leq 150.15$

Problem 5. Suppose that $\alpha_{n}=\alpha+\mathcal{O}\left(n^{-2}\right)$ as $n \rightarrow \infty$. Show that $\alpha_{n}=\alpha+\mathcal{O}\left(n^{-1}\right)$ there exists
Defn: $\alpha_{n}=\alpha+\theta\left(n^{-p}\right)$ means that $\exists K>0$ such that

$$
\left|\alpha_{n}-\alpha\right| \leq K n^{-P} \quad \text { (for sufficiently large } n \text {) }
$$

WIS: $\alpha_{n}=\alpha+\theta\left(n^{-1}\right) \Leftrightarrow \exists K>0$ s.t. $\left|\alpha_{n}-\alpha\right|=K n^{-1}$.
We know $\alpha_{n}=\alpha+\theta\left(n^{-2}\right) \Rightarrow J k>0$ s.t.

$$
\left|\alpha_{n}-\alpha\right| \leq K n^{-2}=\frac{k}{n^{2}}=K \cdot \underbrace{\frac{1}{n}}_{\leq 1} \cdot \frac{1}{n} \leq k \cdot 1 \cdot \frac{1}{n}=k n^{-1}
$$

Thus, $\alpha_{n}=\alpha+\theta\left(n^{-1}\right)$.

Problem 6 (Section 2.1, \#as). Use the Bisection method to find a solution accurate to within 10^{-5} for the following problem:

$$
3 x-e^{x}=0 \text { for } 1 \leq x \leq 2
$$

Matlab demo (coning soon).

