Math 128A: Worksheet \#2

Name: \qquad Date: February 3, 2021
Spring 2021
Problem 1 (Section 1.3, \#7a). Find the rate of convergence of the following function as $h \rightarrow 0$:

$$
\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1 .
$$

Problem 2 (Section 2.1, \#17). Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^{3}-x-1=0$ lying in the interval [1,2] using the bisection method.

Problem 3 (Section 2.2, \#9). Use Theorem 2.3 to show that $g(x)=\pi+0.5 \sin (x / 2)$ has a unique fixed point on $[0,2 \pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2}. Use Corollary 2.5 to estimate the number of iterations required to achieve 10^{-2} accuracy and compare this theoretical estimate to the number actually needed.

Problem 4. Consider the following two functions:

$$
\begin{aligned}
& g_{1}(x)=-\frac{1}{12} x^{3}+x+\frac{5}{12} \\
& g_{2}(x)=\frac{2}{3} x+\frac{5}{3} \frac{1}{x^{2}}
\end{aligned}
$$

Both have $x^{*}=\sqrt[3]{5}$ as a fixed point. For which of these functions does fixed point iteration converge to x^{*} ? If both of them converge, which one is faster?

