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Spring 2021

Problem 1 (Section 1.3, #7a). Find the rate of convergence of the following function as h ! 0:

lim
h!0

sin(h)

h
= 1.
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Problem 2 (Section 2.1, #17). Use Theorem 2.1 to find a bound for the number of iterations needed to
achieve an approximation with accuracy 10�4 to the solution of x3 � x � 1 = 0 lying in the interval [1, 2]
using the bisection method.
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Problem 3 (Section 2.2, #9). Use Theorem 2.3 to show that g(x) = ⇡ + 0.5 sin(x/2) has a unique fixed
point on [0, 2⇡]. Use fixed-point iteration to find an approximation to the fixed point that is accurate to
within 10�2. Use Corollary 2.5 to estimate the number of iterations required to achieve 10�2 accuracy and
compare this theoretical estimate to the number actually needed.
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(a) Show that g
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g
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so 1g' I -- It cosE)let=k

Thus
,
the fixed point is unique .

(b) Matlab demo (see Discussion 103 recording)
Using initial guess Po = Te , get p=3.. 6270 in 3 iterations

.



Problem 3 (Section 2.2, #9). Use Theorem 2.3 to show that g(x) = ⇡ + 0.5 sin(x/2) has a unique fixed
point on [0, 2⇡]. Use fixed-point iteration to find an approximation to the fixed point that is accurate to
within 10�2. Use Corollary 2.5 to estimate the number of iterations required to achieve 10�2 accuracy and
compare this theoretical estimate to the number actually needed.
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(c) Two error bounds : Ipn -pl E k
"
max { po- a.b - Po} (A)

Ipn -pls ¥7 Ip . - pot (B)
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,
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.
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Bound from (B) is very close to actual #of iterations



Problem 4. Consider the following two functions:

g1(x) = � 1

12
x3 + x+

5

12

g2(x) =
2

3
x+

5

3

1

x2

Both have x⇤ = 3
p
5 as a fixed point. For which of these functions does fixed point iteration converge to x⇤?

If both of them converge, which one is faster?
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For fixed point iteration to converge , 1g
'G)le Kal (Theorem 2.4

, p .

61)

The smaller k is
,
the faster it converges (corollary 2.5 , p .

61)
- error bound : Ipn -pl E FI Ip . -pot ⇒ smaller k means smaller error

,
so faster convergence.
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On the other hand
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,
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,

but here k
,
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Thus
,
fixed point iteration is faster for gz sincekik ,

why do g , and gz actually map to themselves on these intervals?
If we have a fixed point xk of g and that 1g
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,
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,
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Section 1.3
,
#8a some

Kao

Suppose o -q- p
and that an = atObiPJ .

⇒ Ian- ate Kt .n-P
Show that an -

= atObie) ⇒ want to show that Ian-ale K
"
. n
- 9

Method1
.

We know Ian- al E K . IT = K T.net = K . Ia . '⇒ ; K
- ha

Since 02gap , p -qs O ,
MP
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E
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Method 2
.

Since Ocoee p ⇒ whup ⇒ Tq s Tp

1 Ln-al k k . Tp L K - Ia , so an= atOcn
-E)

Section 1.3 #IS E. ii. aib;
Ca) Count # of additions and multiplies
# of additions : inside sum Ii,ai- bj takes Ci- 1) additions .

have to do this for each i
,
so from all inside sums

# of inside adds = E
,

Ci-D= E
,

i -E
,

I = nC -n = NEED
outside sum E. (m) takes n-l additions, so

total # of additions = MEI + Ln-D=Cnt2{
# of multiplies : # of multiplies in inside sum En ai-bj is i .

Thus
,
total # ofmultiplies = If i = KII = ItI

(Another
way

: ai .bj takes I multiply, so total # =E.(ji, I)=Ei= HII)
(b) Notice

, multiplying same ai for each j , so factor out :

E. E. ai.bg = EE ailing)
# of adds stays the same : Cnt2{I
# of multiplies : for each i , only one multiply⇒ EE

,

I =
an

much less that E for large n .


