Math 128A: Worksheet #2

Name: _____ Date: February 3, 2021 Spring 2021

Problem 1 (Section 1.3, #7a). Find the rate of convergence of the following function as $h \to 0$:

For sequences:
$$\alpha_n = \alpha + O(n^p)$$
 if $|\alpha_n - \alpha| \le K \cdot N^p$
For a function: $f(h) = L + O(h^p)$ if $|f(h) - L| \le K \cdot h^p$

$$\begin{aligned} \text{Idea: Use Taylor Series to find behavior} \\ \left| \frac{\sin(h)}{h} - 1 \right| &= \left| \frac{k - \frac{h^{2}}{3!} + \frac{h^{2}}{5!} - \dots}{k} - 1 \right| &= \left| \left(k - \frac{k^{2}}{3!} + \frac{h^{4}}{5!} - \dots \right) - k \right| \\ &= \left| -\frac{h^{2}}{3!} + \frac{h^{4}}{5!} - \dots \right| &= O(h^{2}) \\ \text{Identical} \\ \text{behavior} \end{aligned} \\ \\ \text{Use Taylor's Theorem is venialider for constant K:} \\ \sin(h) &= P_{2}(h) + R_{2}(h) = h + \frac{\sin n'''(5)}{3!} h^{3} = h - \frac{\cos(5)}{3!} h^{3} \\ &= h - \frac{\cos(5)}{3!} h^{3} - 1 \right| = \left| 1 - \frac{\cos(5)}{3!} h^{2} - 1 \right| \\ &= \left| -\frac{\cos(5)}{3!} h^{2} \right| = \frac{1 \cos(5)}{3!} h^{2} \leq \frac{1}{3!} h^{2} \end{aligned}$$

1

Problem 2 (Section 2.1, #17). Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval $[1, 2] = [d_1, b_2]$ using the bisection method.

Sequence from
bisection
Theorem 2.1:
$$|p_n-p| \leq \frac{b-a}{2^n} \quad [a,b] \text{ original interval}$$

 $2n \leq 10^{-4}$.
We want to guarantee $|p_n-p| \leq 10^{-4}$. To do this we find when $\frac{b-a}{2^n} \leq 10^{-4}$.
 $\frac{b-a}{2^n} = \frac{1}{2^n} \leq 10^{-4} \implies 1 \leq 2^n \cdot 10^{-4} \implies 10^4 \leq 2^n$
Then, $n = \log_2(2^n) \geq \log_2(10^4) = 13.287$. Thus, $n \geq 14$ will guarantee
the desired accuracy.

Problem 3 (Section 2.2, #9). Use Theorem 2.3 to show that $g(x) = \pi + 0.5 \sin(x/2)$ has a unique fixed point on $[0, 2\pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2} . Use Corollary 2.5 to estimate the number of iterations required to achieve 10^{-2} accuracy and compare this theoretical estimate to the number actually needed.

(a) Show that g has a unique fixed point in [0,27]
Step1: Show that
$$g(x) \in [0, 2\pi]$$
 for all $x \in [0, 2\pi]$
Tried and true method: use Extreme value theorem to find
the min and max of g on [0,2 π]. Then, min $\leq g(x) \leq \max$, so
as long as $0 \leq \min \leq \max \leq 2\pi$, then $g(x) \in [0, 2\pi]$ for all $x \in [0, 2\pi]$.
Here, use that $-1 \leq \sin(\frac{x}{2}) \leq 1$ for all x .
 $1 + \cos(x)$
 $= > -0.5 \leq 0.5 \sin(\frac{x}{2}) \leq 0.5$, so $0 \leq \pi - 0.5 \leq \pi + 0.5 \sin(\frac{x}{2}) \leq \pi + 0.5 \leq 2\pi$
Thus, for all $x \in [0, 2\pi]$, $g(x) \in [0, 2\pi] \Rightarrow g$ has a fixed point
Step2: There exists $k < 1$ such that $1g'(x) \leq k$ for all $x \in [0, 2\pi]$
Now,
 $g'(x) = \frac{1}{4} \cos(\frac{x}{2})$, so $1g'(x) = \frac{1}{4} \cos(\frac{x}{2}) \leq \frac{1}{4} = k$
Thus, the fixed point is unique.

(b) Matlab demo (see Discussion 103 recording)
Using initial guess
$$p_0 = \tau c$$
, get $p = 3.6270$ in 3 iterations.

Problem 3 (Section 2.2, #9). Use Theorem 2.3 to show that $g(x) = \pi + 0.5 \sin(x/2)$ has a unique fixed point on $[0, 2\pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2} . Use Corollary 2.5 to estimate the number of iterations required to achieve 10^{-2} accuracy and compare this theoretical estimate to the number actually needed.

(c) Two error bounds:
$$|p_n-p| \le k^n \max 2p_0-\alpha, b-p_0$$
 (A)
 $|p_n-p| \le \frac{k^n}{1-k} |p_1-p_0|$ (B)

Either works, but let us try both:
(A) we have
$$p_0=\pi$$
, so $p_0 - a = \pi - 0 = \pi$, $b - p_0 = 2\pi - \pi = \pi$. Also, $k = \frac{1}{4}$
Thus, $k^{n} \max \{p_0 - a, b - p_0\} = \pi \cdot \left(\frac{1}{4}\right)^{n} = \frac{\pi}{4}$. We want $k^{n} \max \{p_0 - a, b - p_0\} \le 10^{-2}$
 $\Rightarrow \frac{\pi}{4}n \le 10^{-2} \Rightarrow \pi \le 4^{n} \cdot 10^{-2} \Rightarrow \pi \cdot 10^{2} \le 4^{n} \Rightarrow n = \log_{4}(4^{n}) \ge \log_{4}(\pi \cdot 10^{2}) = 4.147$
Thus, we have that $n \ge 5$ guarantees accuracy within 10^{-2}
(B) Here, $p_1 = q(p_0) = q(\pi) = \pi + 0.5 \sin(\frac{\pi}{2}) = \pi + 0.5 \cdot 1 = \pi + \frac{1}{2}$.
Then, $\frac{k^{n}}{1-k} |p_1 - p_0| = \frac{(\pi)^{n}}{1-\frac{1}{4}} |\pi + \frac{1}{2} - \pi| = \frac{1}{4n} \cdot \frac{1}{34} \cdot \frac{1}{2} = \frac{1}{4n} \cdot \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3.4n}$
Now, $\frac{2}{34n} \le 10^{-2} \Rightarrow \frac{2}{3} \le 10^{-2} 4^{n} \Rightarrow \frac{2}{3} \log_{4}(4^{n}) \ge \log_{4}(\frac{2}{3} \cdot 10^{2}) = 3.029$
Thus, we have that $n \ge 4$ guarantees accuracy within 10^{-2}
better bound

Bound from (B) is very close to actual #of iterations

Problem 4. Consider the following two functions:

$$g_1(x) = -\frac{1}{12}x^3 + x + \frac{5}{12}$$
$$g_2(x) = \frac{2}{3}x + \frac{5}{3}\frac{1}{x^2}$$

Both have $x^* = \sqrt[3]{5}$ as a fixed point. For which of these functions does fixed point iteration converge to x^* ? If both of them converge, which one is faster?

For fixed point iteration to converge,
$$|g'(x)| \le k < 1$$
 (Theorem 2.4, p.61)
The smaller k is, the faster it converges (Corollary 2.5, p.61)
- error bound: $|p_n-p| \le \frac{k^n}{1-k} |p_i-p_o| =>$ smaller k means smaller error, so fuster convergence.

$$g_{1}'(x) = -\frac{1}{4}x^{2} + 1, \qquad g_{2}'(x) = \frac{2}{3} - \frac{10}{3}\frac{1}{x^{3}}$$
$$g_{1}'(x^{*}) = g_{1}'(35) \approx 0.269, \qquad g_{2}'(x^{*}) = g_{2}'(35) = 0$$

Since
$$g'_{2}(x^{*}) = 0$$
 and $g'_{2}(x)$ is continuous around x^{*} , we can find
some interval $(x^{*}-\delta_{z}, x^{*}+\delta_{z})$ where $\lg'_{2}(x) \leq 0, l = k_{2} \leq l$.
On the other hand, $g'_{1}(x^{*}) \approx 0.269$ and $g'_{1}(x)$ is continuous, we
can also find an interval $(x^{*}-\delta_{1}, x^{*}+\delta_{1}) = 1$ g'(x) $\leq k \leq l$,
but here $k_{1} \geq 0.269$ since $\lg'_{1}(x^{*}) = 0.269$.
Thus, fixed point iteration is faster for g_{z} since $k_{z} \leq k$,

Why do g, and
$$g_2$$
 actually map to themselves on these intervals?
If we have a fixed point x^* of g and that $|g'(x)| \le k < 1$
on some interval $(x^* - \delta, x^* + \delta)$, then $g(x) \in (x^* - \delta, x^* + \delta)$ for all $x \in (x^* - \delta, x^* + \delta)$
Proof: By the MNT, $\forall x \in (x^* - \delta, x^* + \delta)$
 $|g(x) - x^*| = |g(x) - g(x^*)| = |g'(\overline{s})| |x - x^*| \le k |x - x^*| \le \delta$
Prived point $\stackrel{q}{=} k < 1$
Thus, $g(x) \in (x^* - \delta, x^* + \delta)$.

Section 1.3, #8a
Suppose
$$0 eqcp$$
 and that $x_n = a + O(x^{-1}) \Rightarrow |a_n, a| \in K, m^p$
Show that $a_n = a + O(n^-1) \Rightarrow |a_n + o(x^{-1})| \Rightarrow |a_n, a| \in K, m^p$
Method! We know $|a_n - a| \leq K \cdot \frac{1}{n^p} = K \cdot \frac{1}{n^{1-n}p^{-1}} = K \cdot \frac{1}{n^{-1}} \cdot \frac{1}{n^{-1}} \leq K \cdot \frac{1}{n^{-1}}$
Method! We know $|a_n - a| \leq K \cdot \frac{1}{n^p} = k \cdot \frac{1}{n^{1-n}p^{-1}} = K \cdot \frac{1}{n^{-1}} \cdot \frac{1}{n^{-1}} \leq K \cdot \frac{1}{n^{1-1}}$
Method! We know $|a_n - a| \leq K \cdot \frac{1}{n^p} = k \cdot \frac{1}{n^{1-n}p^{-1}} = K \cdot \frac{1}{n^{1-1}} \cdot \frac{1}{n^{1-1}} \leq K \cdot \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} = M \cdot \frac{1}{n^{1-1}} \leq K \cdot \frac{1}{n^{1-1}} \leq K \cdot \frac{1}{n^{1-1}} \leq K \cdot \frac{1}{n^{1-1}} \leq K \cdot \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} > \frac{1}{n^{1-1}} = \frac{1}{n^{1-1}} > \frac{1$