Math 128A: Worksheet \#3

Name: \qquad Date: February 10, 2021

Spring 2021
Problem $1(2.3 \# 1)$: Let $f(x)=x^{2}-6$ and $p_{0}=1$. Use Newton's method to find p_{2}.

Problem $2(2.3 \# 5 \mathrm{a})$: Use Newton's method to find a solution accurate to within 10^{-4} for:

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

Problem $3(2.4 \# 9)$: a. Construct a sequence that converges to 0 of order 3 .
b. Suppose $\alpha>1$. Construct a sequence that converges to 0 of order α.

Problem 4: Consider the function $f(x)=x^{4}+x^{2}$. Use Newton's method with $p_{0}=1$ to approximate a zero of f. Generate terms until $\left|p_{n+1}-p_{n}\right|<0.0002$. Construct the sequence $\left\{\hat{p}_{n}\right\}$. Is the convergence improved? Extra: Using $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$, use Steffenson's method to find the zero of f. Is convergence improved?

Problem $5(2.5 \# 15)$: Suppose that $\left\{p_{n}\right\}$ is superlinearly convergent to p. Show that

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p_{n}\right|}{\left|p_{n}-p\right|}=1
$$

Reminder: A sequence $\left\{p_{n}\right\}$ is said to be superlinearly convergent to p if

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=0
$$

