\qquad Date: February 10, 2021
Spring 2021
Problem $1(2.3 \# 1)$: Let $f(x)=x^{2}-6$ and $p_{0}=1$. Use Newton's method to find p_{2}.

$$
\begin{aligned}
& \text { Newton's method: } p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)} \\
& \text { Here } f^{\prime}(x)=2 x . \Rightarrow p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}=1-\frac{-5}{2}=1+\frac{5}{2}=\frac{7}{2} \\
& \\
& p_{2}=p_{1}-\frac{f\left(p_{1}\right)}{f^{\prime}\left(p_{1}\right)}=\frac{7}{2}-\frac{\frac{44}{4}-6}{7}=\frac{7}{2}-\frac{\frac{25}{4}}{7}=\frac{7}{2}-\frac{25}{28}=\frac{73}{28}
\end{aligned}
$$

Problem 2 (2.3\#5a): Use Newton's method to find a solution accurate to within 10^{-4} for:

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

Matlab Demo
Two tolerance checks:

$$
\begin{aligned}
& \text { 1. }\left|f\left(p_{n}\right)\right|<t_{0} \mid \longrightarrow x \approx 2.69064750, \\
& \text { 2. }\left|p_{n+1}-p_{n}\right|<t_{0} \mid \longrightarrow x \approx 2.69064745, \quad 5 \text { iterations } \\
& \hline \text { it ens }
\end{aligned}
$$

(a) Let us find a sequence such that for each n,

$$
\frac{\left|p_{n+1}\right|}{\left|p_{n}\right|^{3}}=1 \Rightarrow\left|p_{n+1}\right|=\left|p_{n}\right|^{3}
$$

One example: $p_{n}=10^{-3^{n}}$. Then, $\left(p_{n}\right)^{3}=\left(10^{-3^{n}}\right)^{3}=10^{-3 \cdot 3^{n}}=10^{-3^{n+1}}=p_{n+1}$ We know $p_{n} \rightarrow 0$ and $p_{n}^{3}=p_{n+1}$, so $\lim _{n \rightarrow \infty} \frac{\left|p_{n n}\right|}{\left.p_{p_{n}}\right|^{3}}=\lim _{n \rightarrow \infty} \frac{p_{n+1}}{p_{n}^{3}}=\lim _{n \rightarrow \infty}(1)=1$.
(b) $\frac{\left|p_{n+1}\right|}{\left|p_{n}\right|^{\alpha}}=1 \Rightarrow p_{n+1}=p_{n}^{\alpha}$

Guess: $p_{n}=\underset{\hat{\jmath}}{10^{-\alpha^{n}}} \rightarrow\left(p_{n}\right)^{\alpha}=\left(10^{-\alpha^{n}}\right)^{\alpha}=10^{-\alpha \cdot \alpha^{n}}=10^{-\alpha^{n+1}}=p_{n+1} \checkmark$ any base $b=1$ works
Note: $p_{n}=2^{-n}$ converges linearly to 0 .

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}\right|}{\left|p_{n}\right|}=\lim _{n \rightarrow \infty} \frac{2^{-(n+1)}}{2^{-n}}=\lim _{n \rightarrow \infty} 2^{-1}=\frac{1}{2}=\lambda
$$

Problem 4: Consider the function $f(x)=x^{4}+x^{2}$. Use Newton's method with $p_{0}=1$ to approximate a zero of f. Generate terms until $\left|p_{n+1}-p_{n}\right|<0.0002$. Construct the sequence $\left\{\hat{p}_{n}\right\}$. Is the convergence improved? Extra: Using $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$, use Steffenson's method to find the zero of f. Is convergence improved?
Matlab Demo:
Aitken's D^{2} method: - start with a sequence $\left\{p_{n}\right\}$

$$
\begin{aligned}
& \text { - } \hat{p}_{n}=p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}, \quad \Delta p_{n}=p_{n+1}-p_{n}, \quad \Delta^{2} p_{n}=\Delta\left(\Delta p_{n}\right)=\Delta p_{n+1}-\Delta p_{n} \\
& =p_{n+2}-2 p_{n+1}+p_{n} \\
& =p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
\end{aligned}
$$

Tolerance check: $\left|p_{u+1}-p_{n}\right|>0.0002$ (actually want $\left.\left|p_{n-p}\right|<t_{0} \mid\right)$

- $\left|f\left(p_{n}\right)\right|<t o l$ - done in Professor Gu's Newton Methad.m

$$
-\operatorname{abs}(\operatorname{fan}(k))<t o l \rightarrow a b s(x(k)-x(k-1))<t 0 l
$$

Steffensen's Method: acceleration of fixed point:

$$
\begin{aligned}
& \text { - } \begin{array}{l}
p_{0}^{(0)}=p_{0}, \quad p_{1}^{(0)}=g\left(p_{0}^{(0)}\right), \quad p_{2}^{(0)}=g\left(p_{2}^{(0)}\right) \\
\cdot \\
-p_{0}^{(1)}=\left\{s^{2}\right\}\left(p_{0}^{(0)}\right), \quad p_{1}^{(1)}=g\left(p_{0}^{(1)}\right), p_{2}^{(1)}=g\left(p_{1}^{(1)}\right) \\
\cdot
\end{array} p_{0}^{(2)}=\left\{s^{2}\right\}\left(p_{0}^{(1)}\right), \cdots
\end{aligned}
$$

Problem 5 (2.5\#15): Suppose that $\left\{p_{n}\right\}$ is superlinearly convergent to p. Show that

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p_{n}\right|}{\left|p_{n}-p\right|}=1
$$

Reminder: A sequence $\left\{p_{n}\right\}$ is said to be superlinearly convergent to p if

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=0
$$

errorin step $n+1$ is "much less" than the error in step n, converges faster than Linear convergence: $\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=\lambda \leftarrow 0<\lambda \leqslant 1 \quad$ linear

Hint: $\frac{\left|p_{n}+1-p_{n}\right|}{\left|p_{n}-p\right|} \simeq$ manipulate this to get a term $\frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}$ and another term

- prove limit ≥ 1, then prove that st is ≤ 1 as well (triangle in equality is your friend)

Rate of Convergence: $\left|p_{n-p}\right| \leq K \frac{1}{n^{q}} \Rightarrow p_{n}=p+\theta\left(n^{-q}\right)$ order of convergence $\alpha=1$ (linear)

- $p_{n}=2^{-n} \rightarrow$ linearly convergent

$$
p_{n+1}=2^{-(n+1)}=2^{-1} 2^{-n}=\frac{1}{2} p_{n}, \lim _{n \rightarrow \infty} \frac{\left|p_{n+1}\right|}{\left|p_{n}\right|}=\frac{1}{2}=\lambda
$$

Order of Convergence: more broad

- some methods converge faster than linear (Modified Nestor's)

