Math 128A: Worksheet \#5

Name: \qquad Date: February 24, 2021

Spring 2021
Problem 1 (3.2 \#1a). Use Neville's method to obtain the approximations for Lagrange interpolating polynomials of degrees one, two, and three to approximate the following:

$$
f(8.4) \text { if } f(8.1)=16.94410, \quad f(8.3)=17.56492, \quad f(8.6)=18.50515, \quad f(8.7)=18.82091
$$

Problem $2(3.3 \# 3 b)$. Use the Newton forward-difference formula to construct interpolating polynomials of degree one, two and three for the following data. Approximate the specified value using each of the polynomials.
$f(0.25)$ if $f(0.1)=-0.62049958, \quad f(0.2)=-0.28398668, \quad f(0.3)=0.00660095, \quad f(0.4)=0.24842440$

Problem 3 (3.4 \#1b and \#3b).
1 b . Use the Hermite theorem or divided differences to construct an approximating polynomial for the following data:

x	$f(x)$	$f^{\prime}(x)$
0.8	0.22363362	2.1691753
1.0	0.65809197	2.0466965

3b. This data was generated by the function $f(x)=\sin \left(e^{x}-2\right)$. Use the interpolating polynomials from 1 b . to approximate $f(0.9)$.

Problem 4. Consider the function $f(x)=\cos (x)$. Use divided differences to compute the interpolation polynomial $H(x)$ of degree at most 2 satisfying

$$
H(0)=f(0), \quad H(\pi / 2)=f(\pi / 2), \quad H^{\prime}(\pi / 2)=f^{\prime}(\pi / 2)
$$

For small $\varepsilon>0$, compute the interpolation polynomial $L(x)$ of degree at most 2 satisfying

$$
L_{\varepsilon}(0)=f(0), \quad L_{\varepsilon}(\pi / 2-\varepsilon)=f(\pi / 2-\varepsilon), \quad L_{\varepsilon}(\pi / 2+\varepsilon)=f(\pi / 2+\varepsilon)
$$

Let ε approach 0 . What do you observe and why?

