Math 128A: Worksheet \#6

Name: \qquad Date: March 3, 2021

Spring 2021
Problem 1. 1. Construct the natural cubic spline for the following data (by hand and using Matlab):

x	$f(x)$
0	3
1	0
2	3

2. This data was taken from the function $f(x)=3(x-1)^{2}$. Use the cubic splines to approximate $f(0.5)$ and $f^{\prime}(0.5)$, and calculate the actual error.
3. This data also matches the function $g(x)=3 x^{4}-5 x^{3}-3 x^{2}+2 x+3$. Use the cubic splines to approximate $g(0.5)$ and $g^{\prime}(0.5)$, and calculate the actual error.

Problem $2(3.6, \# 1 \mathrm{a})$. Let $\left(x_{0}, y_{0}\right)=(0,0)$ and $\left(x_{1}, y_{1}\right)=(5,2)$ be the endpoints of a curve. Use the guidepoints $(1,1)$ and $(6,1)$, respectively, to construct parametric cubic Hermite approximations $(x(t), y(t))$ to the curve and graph the approximations.

Problem 3. Derive a method for approximating $f^{\prime \prime}\left(x_{0}\right)$ whose error term is of order h^{4} by expanding the function f in a sixth Taylor polynomial about x_{0} and evaluating at $x_{0} \pm h$ and $x_{0} \pm 2 h$.

