Math 128A: Worksheet \#7

Name: \qquad Date: March 10, 2021
Spring 2021
Problem 1 (4.2, \#1a). Apply Richardson's Extrapolation on the centered-difference formula:

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)-\frac{h^{4}}{120} f^{(5)}\left(x_{0}\right)-\ldots
$$

to determine $N_{3}(h)$, an approximation to $f^{\prime}\left(x_{0}\right)$, for the following function and stepsize:

$$
f(x)=\ln (x), \quad x_{0}=1.0, \quad h=0.4
$$

Problem 2. Consider the following numerical integration rule:

$$
\int_{a}^{b} f(x) d x \approx(b-a)\left(\frac{1}{4} f(a)+\frac{3}{4} f\left(a+\frac{2}{3}(b-a)\right)\right)
$$

What is the degree of accuracy of this integration rule?
Hint: In order to make the computations simpler, you can assume without loss of generality that $a=0$ and $b=1$.

Problem 3. Consider a function $f:[0,1] \rightarrow \mathbb{R}$. We want to approximate the integral $I=\int_{0}^{1} f(x) d x$ using composite numerical integration based on the above integration rule. Let $I(h)$ denote the approximation of I we obtain by dividing the interval $[0,1]$ into subintervals of length h. What is the order of the error $|I-I(h)|$ as $h \rightarrow 0$, i.e. what is the largest integer k such that

$$
|I-I(h)|=\mathcal{O}\left(h^{k}\right) \text { as } h \rightarrow 0
$$

Hint: In each of the small subintervals of length h approximate f by a Taylor polynomial and use the degree of accuracy determined in Problem 1.

