Math 128A: Worksheet \#8

Name: \qquad Date: March 31, 2021
Spring 2021
Problem 1. Let $I(a, b)$ and $I\left(a, \frac{a+b}{2}\right)+I\left(\frac{a+b}{2}, b\right)$ denote the single and double applications of the Simpson's Three-Eighths rule to $\int_{a}^{b} f(x) d x$. That is,

$$
I(a, b)=\frac{3 h}{8}[f(a)+3 f(a+h)+3 f(a+2 h)+f(b)]
$$

where $h=\frac{b-a}{3} . I\left(a, \frac{a+b}{2}\right)$ and $I\left(\frac{a+b}{2}, b\right)$ are defined similarly.
Derive the relationship between

$$
\left|I(a, b)-I\left(a, \frac{a+b}{2}\right)-I\left(\frac{a+b}{2}, b\right)\right|
$$

and

$$
\left|\int_{a}^{b} f(x) d x-I\left(a, \frac{a+b}{2}\right)-I\left(\frac{a+b}{2}, b\right)\right|
$$

What does this tell us about estimating the error of our numerical integration?

Problem 2. Consider the integration rule

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

with n nodes $x_{1}<\cdots<x_{n}$ and n weights c_{1}, \ldots, c_{n}.
(a) First, suppose that the nodes x_{1}, \cdots, x_{n} are fixed. Show that by choosing the weights c_{1}, \ldots, c_{n} appropriately we can always guarantee the degree of precision is at least $n-1$.
(b) What is the highest degree of precision we can possibly achieve with n nodes and weights? Show that it is impossible to have degree of precision higher than that.

Problem 3. Approximate the integral

$$
\int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y
$$

using the composite trapezoidal rule with $n=2$ subintervals in both the x and y direction.

Problem 4. (a) The error term of approximating the integral $\int_{a}^{b} f(x) d x$ using composite Simpson's rule is given by

$$
-\frac{b-a}{180} h^{4} f^{(4)}(\mu)
$$

where h denotes the length of the subintervals into which $[a, b]$ is divided. In order to compute an approximation of the integral via composite Simpson's rule we need to evaluate the function f a certain number of times. Call this number N. Express N in terms of h. How does the error depend on N ?
(b) The error term for approximating the double integral $\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y$ using double Simpson's rule is given by

$$
-\frac{(d-c)(b-a)}{180} h^{4}\left(\frac{\partial^{4} f}{\partial x^{4}} f(\eta, \mu)+\frac{\partial^{4} f}{\partial y^{4}} f\left(\eta^{\prime}, \mu^{\prime}\right)\right) .
$$

Here the length of the subintervals in both x and y direction is given by h. Again, let N denote the number of times we need to evaluate f in order too compute the approximation. Repeat the same exercise. Express N in terms of h and the error in terms of N.
(c) What do you observe? What problem might we encounter when integrating a function $f\left(x_{1}, \ldots, x_{n}\right)$ on a high dimensional domain?

Problem 5 (4.8, \#9-ish). Use Algorithm 4.4 (Simpson's Double Integral) with $n=m=14$ to approximate

$$
\iint_{R} e^{-(x+y)} d A
$$

for the region R in the plane bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$.

Problem 6 (4.9, \#1c). Use the Composite Simpson's rule with $n=8$ to approximate

$$
\int_{1}^{2} \frac{\ln x}{(x-1)^{1 / 5}} d x
$$

