Math 128A: Worksheet \#10

Name: \qquad Date: April 14, 2021
Spring 2021
Problem 1. Derive the Adams-Moulton two-step method using divided differences for the interpolating polynomial.

Problem 2 (5.7, \#1a). Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance $T O L=10^{-4}, h \max =0.25$, and $\mathrm{hmin}=0.025$ to approximate the solutions to the given initial-value problem. Compare the results to the actual values.

$$
y^{\prime}=t e^{3 t}-2 y, \quad 0 \leq t \leq 1, \quad y(0)=0 ; \quad \text { actual solution } y(t)=\frac{1}{5} t e^{3 t}-\frac{1}{25} e^{3 t}+\frac{1}{25} e^{-2 t}
$$

Problem 3. Consider the second order initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+\sin \left(y^{\prime}(t)\right)+y(t)^{2}=t^{2} \\
y(0)=1 \\
y^{\prime}(0)=\pi / 2
\end{array}\right.
$$

1. Convert this second order equation into a first order system of equations.
2. Apply one step of Euler's method with step size h to this first order system.

Problem 4 (5.10, \#4-ish). Consider the following multistep method to solve the differential equation:

$$
w_{i+1}=5 w_{i}-4 w_{i-1}-3 h f\left(t_{i-1}, w_{i-1}\right)
$$

Analyze this method for consistency, stability, and convergence.

Problem 5 (5.10, \#7). Investigate stability for the difference method

$$
w_{i+1}=-4 w_{i}+5 w_{i-1}+2 h\left[f\left(t_{i}, w_{i}\right)+2 h f\left(t_{i-1}, w_{i-1}\right)\right]
$$

for $i=1,2, \ldots, N-1$, with starting values w_{0}, w_{1}.

Problem 6. Find the region of absolute stability (RAS) for the midpoint method:

$$
w_{i+1}=w_{i}+h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{h}{2} f\left(t_{i}, w_{i}\right)\right) .
$$

Plot the RAS using Matlab.

