Math 128A: Worksheet \#12

Name: \qquad Date: April 28, 2021
Spring 2021
Problem 1. Show that the product of two $n \times n$ lower-triangular matrices is lower triangular.

Problem 2. Show that the inverse of a non-singular $n \times n$ lower-triangular matrix is lower triangular.

Problem 3. Use mathematical induction to show that when $n>1$, the evaluation of the determinant of an $n \times n$ matrix using the definition requires

$$
n!\sum_{k=1}^{n-1} \frac{1}{k!} \text { multiplications/divisions and } n!-1 \text { additions/subtractions. }
$$

Problem 4. 1. Show that solving $A x=b$ by first factoring into $A=L U$ and then solving $L y=b$ and $U x=y$ requires the same number of operations as the Gaussian Elimination Algorithm 6.1
2. Count the number of operations required to solve m linear systems $A x^{(k)}=b^{(k)}$ for $k=1, \ldots, m$ by first factoring A and then using the method of part (c) m times. Compare this to doing Gaussian Elimination m times.

Problem 5. MATLAB demo of $L U$ factorizations and how pivoting is ingrained in the $l u(A)$.

Problem 6 ($6.6 \# 17$). Find all α so that $A=\left[\begin{array}{ccc}2 & \alpha & -1 \\ \alpha & 2 & 1 \\ -1 & 1 & 4\end{array}\right]$ is positive definite.

