Math 54: Worksheet \#1, Solutions

Name: \qquad Date: August 31, 2021

Fall 2021
Problem 1 (True/False). One vector in \mathbb{R}^{2} can span \mathbb{R}^{2}.
Solution. False. The span of a singular vector is a line:

$$
\operatorname{span}(\mathbf{u})=\{c \mathbf{u}: c \in \mathbb{R}\} .
$$

This simply cannot cover the plane of \mathbb{R}^{2}. For example, consider when $\mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then, $\operatorname{span}(\mathbf{u})=$ $\left\{\left[\begin{array}{l}c \\ 0\end{array}\right]: c \in \mathbb{R}\right\}$, which clearly doesn't contain a vector like $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Problem 2 (True/False). Any two vectors in \mathbb{R}^{2} can span \mathbb{R}^{2}.
Solution. False. This is a bit of a trick question. Consider two vectors \mathbf{v}, \mathbf{u} such that $\mathbf{u}=2 \mathbf{v}$. Then, since one is a multiple of the other, $\operatorname{span}(\mathbf{v}, \mathbf{u})$ will still only be a line:

$$
\operatorname{span}(\mathbf{v}, \mathbf{u})=\{c \mathbf{v}+d \mathbf{u}: c, d \in \mathbb{R}\}=\{c \mathbf{v}+2 d \mathbf{v}: c, d \in \mathbb{R}\}=\{e \mathbf{v}: e \in \mathbb{R}\}=\operatorname{span}(\mathbf{v}) .
$$

We will soon learn a concept of linear independence. As long as \mathbf{u} and \mathbf{v} are linearly independent (which for two vectors means that they are not parallel), we will have that $\operatorname{span}(\mathbf{u}, \mathbf{v})=\mathbb{R}^{2}$.

Problem 3 (True/False). The columns of an $m \times n$ matrix A span \mathbb{R}^{m} if and only if there is a pivot in each row of $\operatorname{REF}(A)$.

Solution. True. On Tuesday, we showed that $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$ if and only if $\operatorname{REF}(A)$ has a pivot in each row (because a pivot in each row gives you at least one degree of freedom to solve each equation).

We also note that $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$ if and only if the columns of A span \mathbb{R}^{m}. To see this, we have to notice that you can rewrite the system of equation $A \mathbf{x}=\mathbf{b}$ as

$$
x_{1} \mathbf{a}_{1}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b},
$$

where \mathbf{a}_{i} is the i-th column of A. The left hand side of this equation is a vetor in $\operatorname{span} \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, so the system is consistent as long as \mathbf{b} is in span $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Thus, the system $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$ if and only every $\mathbf{b} \in \mathbb{R}^{m}$ is in $\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$, meaning that the columns of A span \mathbb{R}^{m}.

Problem 4 (True/False). Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

The system $A \mathbf{x}=\mathbf{b}$ has a unique solution for any b.
Solution. False. If we write the augmented matrix $A \mathbf{x}=\mathbf{b}$,

$$
\left[\begin{array}{lll|l}
1 & 0 & 1 & b_{1} \\
0 & 1 & 1 & b_{2}
\end{array}\right]
$$

we see that this is in RREF, and there are pivots in the first two columns. Since the third column has no pivot, x_{3} is a free variable. Also, since the augmented column is not a pivot column, the system is consistent. Thus, for each different \mathbf{b}, the system has inifinitely many solutions (not one unique solution).

Problem 5 (True/False). A system $A \mathbf{x}=\mathbf{b}$ has a solution if and only if b is in the span of the columns of A. Solution. True. We showed this in Problem 3 by noting that the system $A \mathbf{x}=\mathbf{b}$ is equivalent to the vector equation:

$$
x_{1} \mathbf{a}_{1}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

This has a solution if and only if $\mathbf{b} \in \operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$.

Problem 6 (True/False). Any linear combination of vectors can always be written in the form $A \mathbf{x}$ for a suitable matrix A and vector \mathbf{x}.

Solution. True. Consider any linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, where each $\mathbf{v}_{i} \in \mathbb{R}^{m}$:

$$
c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}
$$

I claim that this is equivalent to the matrix-vector multiplication $A \mathbf{x}$, where \mathbf{v}_{i} is the i-th column of A and $\mathbf{x}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$.

Problem $7(1.3 \# 6)$. Write a system of equations that is equivalent to the following vector equation:

$$
x_{1}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
8 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solution. We use the properties of vector algebra to rewrite this equation:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=x_{1}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
8 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]=\left[\begin{array}{c}
-2 x_{1} \\
3 x_{1}
\end{array}\right]+\left[\begin{array}{l}
8 x_{2} \\
5 x_{2}
\end{array}\right]+\left[\begin{array}{c}
x_{3} \\
-6 x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{1}+8 x_{2}+x_{3} \\
3 x_{1}+5 x_{2}-6 x_{3}
\end{array}\right]
$$

Equating the first and second components of each side of this equation, we get the system:

$$
\begin{array}{r}
-2 x_{1}+8 x_{2}+x_{3}=0 \\
3 x_{1}+5 x_{2}-6 x_{3}=0
\end{array}
$$

Problem $8(1.3 \# 26)$. Let $A=\left[\begin{array}{ccc}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$ and let $\mathbf{b}=\left[\begin{array}{c}10 \\ 3 \\ 3\end{array}\right]$. Let W be the set of all linear combinations of the columns of A.

1. Is \mathbf{b} in W ?
2. Show that the third column of A is in W ?

Solution. 1. We know that \mathbf{b} is in W if and only if the system $A \mathbf{x}=\mathbf{b}$ is consistent. We check this out by row-reducing the augmented matrix:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc|c}
2 & 0 & 6 & 10 \\
-1 & 8 & 5 & 3 \\
1 & -2 & 1 & 3
\end{array}\right]} & \longrightarrow\left[\begin{array}{ccc|c}
1 & -2 & 1 & 3 \\
2 & 0 & 6 & 10 \\
-1 & 8 & 5 & 3
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & 1 & 3 \\
0 & 4 & 4 & 4 \\
0 & 6 & 6 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{ccc|c}
1 & -2 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]\right)
$$

This is consistent because the augmented column is not a pivot column.
Note: the row operations were:
(a) $R_{1} \leftrightarrow R_{3}$
(b) $R_{2} \rightarrow R_{2}-2 R_{1}$ and $R_{3} \rightarrow R_{3}+R_{1}$
(c) $R_{2} \rightarrow R_{2} / 4$ and $R_{3} \rightarrow R_{3} / 4$
(d) $R_{3} \rightarrow R_{3}-R_{2}$
2. We have that $W=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)$, where \mathbf{a}_{i} is the i-th column of A. Then, \mathbf{a}_{3} is clearly in W since

$$
\mathbf{a}_{3}=0 \mathbf{a}_{1}+0 \mathbf{a}_{2}+1 \mathbf{a}_{3}
$$

Another way to show this is by checking if $A \mathbf{x}=\mathbf{a}_{3}$ is consistent. This again works, with one solution being $\mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Problem 9 (1.4 \#20). Let

$$
B=\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & 7 \\
-2 & -8 & 2 & -1
\end{array}\right]
$$

Can every vector in \mathbb{R}^{4} be written as a linear combination of the columns of the matrix B above? Do the columns of B span \mathbb{R}^{4} ?

Solution. We know that this is true if and only if $\operatorname{REF}(B)$ has a pivot in each row. We row-reduce:

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & 7 \\
-2 & -8 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & -1 & -1 & 5 \\
0 & -2 & -2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -7
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that the fourth row does not have a pivot, meaning that the columns of B do not span \mathbb{R}^{4}.
Note: the row operations were:

1. $R_{3} \rightarrow R_{3}-R_{1}$ and $R_{4} \rightarrow R_{4}+2 R_{1}$.
2. $R_{3} \rightarrow R_{3}+R_{2}$ and $R_{4} \rightarrow R_{4}+2 R_{2}$
3. $R_{3} \leftrightarrow R_{4}$
