Math 54: Worksheet \#2

Name: \qquad Date: September 2, 2021

Fall 2021
Problem 1 (True/False). If \mathbf{p} is a solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{u} is a solution to $A \mathbf{x}=\mathbf{0}$, then $\mathbf{v}=\mathbf{p}+\mathbf{u}$ is a solution to $A \mathbf{x}=\mathbf{b}$.

Problem 2 (True/False). If the system $A \mathbf{x}=\mathbf{0}$ has 3 free variables, then there exists vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ such that the solution set is

$$
\mathbf{x}=r \mathbf{v}_{1}+s \mathbf{v}_{2}+t \mathbf{v}_{3}, \quad(r, s, t \text { in } \mathbb{R})
$$

Problem 3 (True/False). The columns of a matrix A are linearly dependent if and only if the homogeneous system $A \mathbf{x}=\mathbf{0}$ has only one solution. (What do we need in terms of pivots for the second half to be true?)

Problem 4 (True/False). Let $\mathbf{v}, \mathbf{u}, \mathbf{w} \in \mathbb{R}^{m}$. Suppose that the set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, the set $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent, and the set $\{\mathbf{u}, \mathbf{w}\}$ is linearly independent. Then, the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.

Problem $5(1.5 \# 10)$. Describe all solutions of $A \mathbf{x}=\mathbf{0}$ in parametric vector form, where A is row equivalent to the following matrix:

$$
\left[\begin{array}{llll}
1 & 3 & 0 & -4 \\
2 & 6 & 0 & -8
\end{array}\right]
$$

Problem 6 (1.5\#18). Describe and compare the solution sets of $x_{1}-3 x_{2}+5 x_{3}=0$ and $x_{1}-3 x_{2}+5 x_{3}=4$.

Problem $7(1.7 \# 12)$. Find the values of h for which the vectors are linearly dependent.

$$
\left[\begin{array}{c}
2 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
7 \\
-3
\end{array}\right],\left[\begin{array}{l}
8 \\
h \\
4
\end{array}\right]
$$

Problem $8(1.7 \# 24)$. Describe the possible echelon forms of a matrix A, if A is a 2×2 matrix with linaerly depedent columns.

