Math 54: Worksheet #3

 Name:
 Date:
 September 7, 2021

 Fall 2021
 Fall 2021

Problem 1 (True/False). The map $T : \mathbb{R} \to \mathbb{R}$ given by T(x) = 2x + 1 is a linear map.

Problem 2 (True/False). The map $T : \mathbb{R} \to \mathbb{R}$ given by T(x) = 2x is a linear map.

Problem 3 (True/False). A linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ can be a surjection.

Problem 4 (True/False). Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then,

 $T(c_1\underline{v}_1 + \dots + c_n\underline{v}_n) = c_1T(\underline{v}_1) + \dots + c_nT(\underline{v}_n).$

Problem 5 (True/False). If A is a 4×3 matrix and T is the linear transformation defined by $T(\underline{x}) = A\underline{x}$, then the domain of T is \mathbb{R}^3 .

Problem 6 (1.8 #10). Find all \underline{x} in \mathbb{R}^4 that are mapped to the zero vector by the transformation $\underline{x} \mapsto A\underline{x}$ for the matrix

$$A = \begin{bmatrix} 1 & 3 & 9 & 2 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -2 & 3 & 0 & 5 \end{bmatrix}$$

Problem 7 (1.8 #20). Let $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\underline{v}_1 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and $\underline{v}_2 = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \underline{x} to $x_1\underline{v}_1 + x_2\underline{v}_2$. Find a matrix A such that $T(\underline{x}) = A\underline{x}$ for each \underline{x} .