Math 54: Worksheet \#3

Name: \qquad Date: September 7, 2021
Fall 2021
Problem 1 (True/False). The map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=2 x+1$ is a linear map.

Problem 2 (True/False). The map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=2 x$ is a linear map.

Problem 3 (True/False). A linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ can be a surjection.

Problem 4 (True/False). Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then,

$$
T\left(c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}\right)=c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{n} T\left(\underline{v}_{n}\right) .
$$

Problem 5 (True/False). If A is a 4×3 matrix and T is the linear transformation defined by $T(\underline{x})=A \underline{x}$, then the domain of T is \mathbb{R}^{3}.

Problem $6(1.8 \# 10)$. Find all \underline{x} in \mathbb{R}^{4} that are mapped to the zero vector by the transformation $\underline{x} \mapsto A \underline{x}$ for the matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & 9 & 2 \\
1 & 0 & 3 & -4 \\
0 & 1 & 2 & 3 \\
-2 & 3 & 0 & 5
\end{array}\right]
$$

Problem $7(1.8 \# 20)$. Let $\underline{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \underline{v}_{1}=\left[\begin{array}{c}-2 \\ 5\end{array}\right]$, and $\underline{v}_{2}=\left[\begin{array}{c}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \underline{x} to $x_{1} \underline{v}_{1}+x_{2} \underline{v}_{2}$. Find a matrix A such that $T(\underline{x})=A \underline{x}$ for each \underline{x}.

