Math 54: Worksheet \#3, Solutions

Name: \qquad Date: September 7, 2021
Fall 2021
Problem 1 (True/False). The map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=2 x+1$ is a linear map.
Solution. False. Let x and y in \mathbb{R}. Then,

$$
T(x+y)=2(x+y)+1=2 x+2 y+1=(2 x+1)+(2 y+1)-1=T(x)+T(y)-1 \neq T(x)+T(y)
$$

Thus, T is not linear.
Problem 2 (True/False). The map $T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=2 x$ is a linear map.
Solution. True. Let x and y in \mathbb{R}, and let c and d be in \mathbb{R}. Then,

$$
T(c x+d y)=2(c x+d y)=2(c x)+2(d y)=c(2 x)+d(2 y)=c T(x)+d T(y)
$$

Thus, T is linear.
Problem 3 (True/False). A linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ can be a surjection.
Solution. False. Intuitively, a linear map T can not map the domain onto something that is "bigger" than it, where size is the determined by dimension. For example, we say \mathbb{R}^{2} has dimension 2 and \mathbb{R}^{3} has dimension 3, so T could never map \mathbb{R}^{2} onto all of \mathbb{R}^{3}.

As we will see in section 1.9 , every linear map T can be written as $T(\underline{x})=A \underline{x}$ for some matrix A, where A is $m \times n$ if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then,

$$
T(\underline{x})=A \underline{x}=x_{1} \underline{a}_{1}+\cdots+x_{n} \underline{a}_{n},
$$

where \underline{a}_{j} is the j-th column of A. Thus, we see that the image of T are all linear combinations of the columns of A, meaning that $\operatorname{Im}(T)=\operatorname{span}\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$. Then, we have that T is surjective (meaning $\left.\operatorname{Im}(T)=\mathbb{R}^{m}\right)$ if and only if the columns of A span \mathbb{R}^{m}, which occurs if and only if there exists a pivot in each row.

If $m>n$ (like in our problem), we know that A has more rows than columns, so it can't have a pivot in each row. This means that T cannot be a surjection.

Problem 4 (True/False). Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then,

$$
T\left(c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}\right)=c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{n} T\left(\underline{v}_{n}\right) .
$$

Solution. True. This follows from using linearity of $T n$ times. I'll show the pattern:

$$
\begin{aligned}
T\left(c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}\right) & =T\left(c_{1} \underline{v}_{1}\right)+T\left(c_{2} \underline{v}_{2}+\cdots+c_{n} \underline{v}_{n}\right)=T\left(c_{1} \underline{v}_{1}\right)+T\left(c_{2} \underline{v}_{2}\right)+T\left(c_{3} \underline{v}_{3}+\cdots+c_{n} \underline{v}_{n}\right) \\
& =\cdots=T\left(c_{1} \underline{v}_{1}\right)+\cdots+T\left(c_{n} \underline{v}_{n}\right)=c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{n} T\left(\underline{v}_{n}\right)
\end{aligned}
$$

where we take all the constants out in the last step.
Problem 5 (True/False). If A is a 4×3 matrix and T is the linear transformation defined by $T(\underline{x})=A \underline{x}$, then the domain of T is \mathbb{R}^{3}.

Solution. True. Here, we just have to match dimensions. Since A is 4×3, the multiplication $A \underline{x}$ only makes sense if \underline{x} is in \mathbb{R}^{3}. This means the domain of T is \mathbb{R}^{3}.

In general, if the matrix A is $m \times n$, then the matrix-vector multiplication $A \underline{x}$ only makes sense when \underline{x} is in \mathbb{R}^{n}.

Problem $6(1.8 \# 10)$. Find all \underline{x} in \mathbb{R}^{4} that are mapped to the zero vector by the transformation $\underline{x} \mapsto A \underline{x}$ for the matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & 9 & 2 \\
1 & 0 & 3 & -4 \\
0 & 1 & 2 & 3 \\
-2 & 3 & 0 & 5
\end{array}\right]
$$

Solution. First, we translate this problem into something we know how to solve. We want to find all vectors \underline{x} in \mathbb{R}^{4} such that $A \underline{x}=\underline{0}$. This is simply solving a system of equations.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc|c}
1 & 3 & 9 & 2 & 0 \\
1 & 0 & 3 & -4 & 0 \\
0 & 1 & 2 & 3 & 0 \\
-2 & 3 & 0 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & 3 & 9 & 2 & 0 \\
0 & -3 & -6 & -6 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 9 & 18 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 3 & 9 & 2 & 0 \\
0 & 1 & 2 & 2 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 1 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & 3 & 9 & 2 & 0 \\
0 & 1 & 2 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{llll|l}
1 & 3 & 9 & 2 & 0 \\
0 & 1 & 2 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 3 & 9 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{llll|l}
1 & 0 & 3 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Here, x_{3} is a free variable, so we let $x_{3}=s$. Then, we have the solutions

$$
\left\{\underline{x}=s\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0
\end{array}\right]: s \in \mathbb{R}\right\}
$$

Note 1: the row operations were:

1. $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{4} \rightarrow R_{4}+2 R_{1}$
2. $R_{2} \rightarrow R_{2} / 3$ and $R_{4} \rightarrow R_{4} / 9$
3. $R_{3} \rightarrow R_{3}-R_{2}$ and $R_{4} \rightarrow R_{4}-R_{2}$
4. $R_{4} \rightarrow R_{4}+R_{3}$
5. $R_{2} \rightarrow R_{2}-2 R_{3}$ and R_{1} to $R_{1}-2 R_{3}$
6. $R_{1} \rightarrow R_{1}-3 R_{2}$

Note 2: this set of solutions we found is called the kernel of the transformation.

Problem $7(1.8 \# 20)$. Let $\underline{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \underline{v}_{1}=\left[\begin{array}{c}-2 \\ 5\end{array}\right]$, and $\underline{v}_{2}=\left[\begin{array}{c}7 \\ -3\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \underline{x} to $x_{1} \underline{v}_{1}+x_{2} \underline{v}_{2}$. Find a matrix A such that $T(\underline{x})=A \underline{x}$ for each \underline{x}.
Solution. We have that

$$
T(\underline{x})=x_{1} \underline{v}_{1}+x_{2} \underline{v}_{2}=\left[\begin{array}{ll}
\underline{v}_{1} & \underline{v}_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A \underline{x}
$$

where A has the columns \underline{v}_{1} and \underline{v}_{2}. This comes from our usual relation of matrix equations and vector equations!

Note: As we will see in section 1.9, column j of A, denoted \underline{a}_{j}, will be given by $T\left(\underline{e}_{j}\right)$, where $\underline{e}_{j}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$,
where the 1 occurs in the j-th component. We could use this to figure out the matrix A as well:

$$
\begin{aligned}
& \underline{a}_{1}=T\left(\underline{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=1 \underline{v}_{1}+0 \underline{v}_{2}=\underline{v}_{1} \\
& \underline{a}_{2}=T\left(\underline{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=0 \underline{v}_{1}+1 \underline{v}_{2}=\underline{v}_{2}
\end{aligned}
$$

