Math 54: Worksheet \#4

Name: \qquad Date: September 9, 2021
Fall 2021

Problem 1 (True/False). A linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ can be a surjection.

Problem 2 (True/False). A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on all the coordinate vectors $\underline{e}_{1}, \ldots, \underline{e_{n}}$ in \mathbb{R}^{n}.

Problem 3 (True/False). If A is a 4×3 matrix, the transformation $\underline{x} \rightarrow A \underline{x}$ cannot be one-to-one.

Problem 4 (True/False). A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps to a unique vector in \mathbb{R}^{m}.

Problem $5(1.8 \# 10)$. Find the standard matrix of the following linear transformation: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.

Problem 6 (1.8 \#16-ish). Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by

$$
T(\underline{x})=T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{1}+5 x_{2} \\
x_{1}
\end{array}\right] .
$$

Find a 3×2 matrix such that $T(\underline{x})=A \underline{x}$

Problem 7. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that $T(\underline{x})=A \underline{x}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
4 & 2 & 0 \\
0 & 6 & 8 \\
6 & 9 & 1
\end{array}\right]
$$

Is the transformation one-to-one? Is it onto?

