Math 54: Worksheet \#4, Solutions

Name: \qquad Date: September 9, 2021

Fall 2021
Problem 1 (True/False). A linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ can be a surjection.
Solution. True. For example, we could let

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

One can check that this is a linear map, and it is clear that the map is a surjection: for every $\underline{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2}, we have that $\underline{y}=T(\underline{x})$ where

$$
\underline{x}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
c
\end{array}\right] .
$$

Here, c can be any real number (which also shows that this map is not one-to-one).
Note: this corresponds to $T(\underline{x})=A \underline{x}$ where

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Since this matrix has a pivot in each row, we see that the linear map is a surjection.

Problem 2 (True/False). A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect all the coordinate vectors $\underline{e}_{1}, \ldots, \underline{e_{n}}$ in \mathbb{R}^{n}.

Solution. True. To see this, notice that for any $\underline{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ in \mathbb{R}^{n}, we have that

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
x_{n}
\end{array}\right]=x_{1} \underline{e}_{1}+\cdots x_{n} \underline{e}_{n} .
$$

Thus, we have that

$$
T(\underline{x})=T\left(x_{1} \underline{e}_{1}+\cdots x_{n} \underline{e}_{n}\right)=x_{1} T\left(\underline{e}_{1}\right)+\cdots+x_{n} T\left(\underline{e}_{n}\right) .
$$

Thus, if we know what $T\left(\underline{e}_{j}\right)$ is for each j, we know what $T(\underline{x})$ is for any x.
In fact, we can see that

$$
T(\underline{x})=x_{1} T\left(\underline{e}_{1}\right)+\cdots+x_{n} T\left(\underline{e}_{n}\right)=A \underline{x}
$$

where the j-th column of A is $\underline{a}_{j}=T\left(\underline{e}_{j}\right)$.

Problem 3 (True/False). If A is a 4×3 matrix, the transformation $\underline{x} \rightarrow A \underline{x}$ cannot be one-to-one.
Solution. False. A linear transformation $\underline{x} \rightarrow A \underline{x}$ if the matrix A has a pivot in each column. This is definitely possible if A is a 4×3 matrix: for example, consider

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Problem 4 (True/False). A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if each vector in \mathbb{R}^{n} maps to a unique vector in \mathbb{R}^{m}.

Solution. False. This is only the requirement for T to be well-defined. A mapping T is one-to-one if each vector in \mathbb{R}^{m} is mapped to by at most one vector in \mathbb{R}^{n}.

In other words, T is one-to-one if when $T\left(\underline{x_{1}}\right)=\underline{y}=T\left(\underline{x_{2}}\right)$, we have that $\underline{x_{1}}=\underline{x_{2}}$.

Problem 5 (1.8 \#10). Find the standard matrix of the following linear transformation: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the vertical x_{2}-axis and then rotates points $\pi / 2$ radians.

Solution. We figure out how the two coordinate vectors \underline{e}_{1} and \underline{e}_{2} are transformed. This is easier to picture with a drawing, but I will try to explain in words.

First, reflecting across the vertical x_{2}-axis takes $\underline{e}_{1} \mapsto-\underline{e}_{1}$ and $\underline{e}_{2} \mapsto \underline{e}_{2}$ (\underline{e}_{2} is left unchanged).
Second, rotating points by $\pi / 2$ radians (counter-clockwise) takes $\underline{e}_{1} \mapsto \underline{e}_{2}$ and $\underline{e}_{2} \mapsto-\underline{e}_{1}$.
Combining the two, we get that

$$
\begin{aligned}
& \underline{e}_{1} \mapsto-\underline{e}_{1} \mapsto-\underline{e}_{2} \\
& \underline{e}_{2} \mapsto \underline{e}_{2} \mapsto-\underline{e}_{1} .
\end{aligned}
$$

This means that the first column of A is $T\left(\underline{e}_{1}\right)=-\underline{e}_{2}$, and the second column of A is $T\left(\underline{e}_{2}\right)=-\underline{e}_{1}$. Thus, we have that

$$
A=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

Note: you can also get the standard matrix by multiplying the standard matrix of each of the parts. From above, the reflection across the vertical x_{2}-axis has the standard matrix

$$
A_{1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Then, the rotation by $\pi / 2$ radians has the standard matrix

$$
A_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Multiplying (with the transformations in order from right to left), we get that

$$
A_{2} A_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=A .
$$

Problem 6 (1.8 \#16-ish). Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by

$$
T(\underline{x})=T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{1}+5 x_{2} \\
x_{1}
\end{array}\right]
$$

Find a 3×2 matrix such that $T(\underline{x})=A \underline{x}$
Solution. The standard way to do this is to find $T\left(\underline{e_{j}}\right)$ for each coordinate vector $\underline{e_{j}}$ in \mathbb{R}^{2} :

$$
\begin{gathered}
T\left(\underline{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \\
T\left(\underline{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right] .
\end{gathered}
$$

These form the columns of A, so we have that

$$
A=\left[\begin{array}{cc}
1 & -2 \\
3 & 5 \\
1 & 0
\end{array}\right]
$$

Note: you can also expand the formula for T in a vector equation and go from there:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{1}+5 x_{2} \\
x_{1}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
5 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
3 & 5 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Problem 7. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that $T(\underline{x})=A \underline{x}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
4 & 2 & 0 \\
0 & 6 & 8 \\
6 & 9 & 1
\end{array}\right]
$$

Is the transformation one-to-one? Is it onto?
Solution. First of all, since A has more rows than columns, we know that A cannot have a pivot in each row, meaning that the transformation is not onto.

To determine if the transformation is one-to-one, we row-reduce:

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
4 & 2 & 0 \\
0 & 6 & 8 \\
6 & 9 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & -10 & -8 \\
0 & 6 & 8 \\
0 & -9 & -11
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & 5 & 4 \\
0 & 3 & 4 \\
0 & -9 & -11
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 5 & 4 \\
0 & 0 & 8 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 3 & 2 \\
0 & 5 & 4 \\
0 & 0 & 8 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, A has a pivot in each column, meaning the transformation is one-to-one.
Note: the row operations were

1. $R_{2} \rightarrow R_{2}-4 R_{1}$ and $R_{4} \rightarrow R_{4}-6 R_{1}$
2. $R_{2} \rightarrow R_{2} / 2$ and $R_{3} \rightarrow R_{3} / 2$
3. $R_{3} \rightarrow 5 R_{3}-3 R_{2}$ and $R_{4} \rightarrow R_{4}+3 R_{3}$
4. $R_{4} \rightarrow R_{4}+\frac{1}{8} R_{3}$
