Math 54: Worksheet \#5

Name: \qquad Date: September 14, 2021
Fall 2021
Problem 1 (True/False). If $A B=0$, then either $A=0$ or $B=0$.

Problem 2 (True/False). Suppose that A is an $m \times n$ matrix and $A B$ is an $m \times p$ matrix. Then B is an $p \times n$ matrix.

Problem 3 (True/False). If $A B=I$, then $B A=I$.

Problem 4 (True/False). If A is an invertible $n \times n$ matrix, then $\underline{x}=A^{-1} \underline{b}$ is the only solution to $A \underline{x}=\underline{b}$.

Problem $5(2.1 \# 6)$. Compute the product $A B$ for the following two matrices in two ways: (a) by the definition, where $A \underline{b}_{1}$ and $A \underline{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$:

$$
A=\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]
$$

Problem 6 (2.1 \#24). Suppose that $A D=I_{m}$. Show that for any \underline{b} in \mathbb{R}^{m}, the equation $A \underline{x}=\underline{b}$ has a solution. [Hint: Think about the equation $A D \underline{b}=\underline{b}$.] Explain why A cannot have more rows than columns.

Problem 7 (2.2\#4-ish). Find the inverse of the matrix

$$
\left[\begin{array}{ll}
3 & -4 \\
7 & -8
\end{array}\right]
$$

Use the inverse to solve the system

$$
\begin{aligned}
& 3 x_{1}-4 x_{2}=3 \\
& 7 x_{1}-8 x_{2}=2
\end{aligned}
$$

