Math 54: Worksheet \#5, Solutions

Name: \qquad Date: September 14, 2021

Fall 2021

Problem 1 (True/False). If $A B=0$, then either $A=0$ or $B=0$.
Solution. False. This is a classic property about multiplication of matrices that doesn't match our intuition of multiplication of numbers. A counterexample is:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Problem 2 (True/False). Suppose that A is an $m \times n$ matrix and $A B$ is an $m \times p$ matrix. Then B is an $p \times n$ matrix.

Solution. False. B is an $n \times p$ matrix. In general, for the matrix multiplication $A B$ to make sense, the number of columns of A has to match the number of rows of B. Then, $A B$ has the same number of rows as A and columns as B :

$$
(m \times \not x) \cdot(\not x \times p)=m \times p
$$

Problem 3 (True/False). If $A B=I$, then $B A=I$.
Solution. False. This can be false if A and B are rectangular. For example:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then, $A B=I_{2}$, the 2×2 identity matrix. On the other hand,

$$
B A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note: If A and B are square $(n \times n)$, then the statement is actually true as $B=A^{-1}$.

Problem 4 (True/False). If A is an invertible $n \times n$ matrix, then $\underline{x}=A^{-1} \underline{b}$ is the only solution to $A \underline{x}=\underline{b}$.
Solution. True. Suppose that \underline{x} is a solution of $A \underline{x}=\underline{b}$. Then, since A is invertible,

$$
\underline{x}=A^{-1}(A \underline{x})=A^{-1} \underline{b} .
$$

Thus, the only possible solution of $A \underline{x}=\underline{b}$ is $A^{-1} \underline{b}$, which you can check is a solution.

Problem $5(2.1 \# 6)$. Compute the product $A B$ for the following two matrices in two ways: (a) by the definition, where $A \underline{b}_{1}$ and $A \underline{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$:

$$
A=\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]
$$

Solution. First, we have that

$$
\begin{aligned}
& A \underline{b}_{1}=\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \cdot 1-2 \cdot 2 \\
-3 \cdot 1+0 \cdot 2 \\
3 \cdot 1+5 \cdot 2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
13
\end{array}\right] \\
& A \underline{b}_{2}=\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
4 \cdot 3-2 \cdot(-1) \\
-3 \cdot 3+0 \cdot(-1) \\
3 \cdot 3+5 \cdot(-1)
\end{array}\right]=\left[\begin{array}{c}
14 \\
-9 \\
4
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
A B=\left[\begin{array}{cc}
0 & 14 \\
-3 & -9 \\
13 & 4
\end{array}\right]
$$

The other way, we have that

$$
A B=\left[\begin{array}{cc}
4 & -2 \\
-3 & 0 \\
3 & 5
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
4 \cdot 1-2 \cdot 2 & 4 \cdot 3-2 \cdot(-1) \\
-3 \cdot 1+0 \cdot 2 & -3 \cdot 3+0 \cdot(-1) \\
3 \cdot 1+5 \cdot 2 & 3 \cdot 3+5 \cdot(-1)
\end{array}\right]=\left[\begin{array}{cc}
0 & 14 \\
-3 & -9 \\
13 & 4
\end{array}\right]
$$

Problem $6(2.1 \# 24)$. Suppose that $A D=I_{m}$. Show that for any \underline{b} in \mathbb{R}^{m}, the equation $A \underline{x}=\underline{b}$ has a solution. [Hint: Think about the equation $A D \underline{b}=\underline{b}$.] Explain why A cannot have more rows than columns.
Solution. Based on the hint, we consider the equation $A D \underline{b}=\underline{b}$, which holds since $A D=I_{m}$ and $I_{m} \underline{b}=\underline{b}$. Regrouping the terms, we see that

$$
A(D \underline{b})=\underline{b}
$$

meainig that $D \underline{b}$ is always a solution to the equation $A \underline{x}=\underline{b}$. Thus, the equation $A \underline{x}=\underline{b}$ has a solution for any \underline{b} in \mathbb{R}^{m} (i.e. the system is always consistent).

As we have seen in previous sections, the system $A \underline{x}=\underline{b}$ is always consistent if and only if the columns of A span \mathbb{R}^{m}, which happens if and only if there is a pivot in each row of A. This can't happen if A has more rows than columns as then A doesn't have enough pivots to have a pivot in each row.

Problem 7 (2.2\#4-ish). Find the inverse of the matrix

$$
\left[\begin{array}{ll}
3 & -4 \\
7 & -8
\end{array}\right]
$$

Use the inverse to solve the system

$$
\begin{aligned}
& 3 x_{1}-4 x_{2}=3 \\
& 7 x_{1}-8 x_{2}=2
\end{aligned}
$$

Solution. We use the formula for the inverse of a 2×2 matrix. First, we find

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -4 \\
7 & -8
\end{array}\right]\right)=3 \cdot(-8)-(-4) \cdot 7=-24+28=4
$$

Then, we have that the inverse of the matrix is

$$
\frac{1}{4}\left[\begin{array}{cc}
-8 & 4 \\
-7 & 3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
-7 / 4 & 3 / 4
\end{array}\right]
$$

To solve the system, notice that we can rewrite the system in matrix form as

$$
\left[\begin{array}{ll}
3 & -4 \\
7 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

We can solve this by multiplying by the inverse matrix on both sides, getting

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
-7 / 4 & 3 / 4
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \cdot 3+1 \cdot 2 \\
-7 / 4 \cdot 3+3 / 4 \cdot 2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-15 / 4
\end{array}\right]
$$

So we have $x_{1}=-4$ and $x_{2}=-15 / 4$.

