Math 54: Worksheet #6

 Name:
 Date:
 September 16, 2021

 Fall 2021

Problem 1 (True/False). If A is invertible, then the inverse of A^{-1} is A^{T} .

Problem 2 (True/False). Suppose A is an $n \times n$ matrix. If there is an $n \times n$ matrix D such that AD = I, then there is also an $n \times n$ matrix C such that CA = I.

Problem 3 (True/False). If A and B are $n \times n$ matrices such that AB is invertible, then both A and B are invertible.

Problem 4 (True/False). A 5×5 matrix A whose columns don't span \mathbb{R}^5 can be invertible.

Problem 5 (2.2 #17). Solve the equation AB = BC for A assuming that all the matrices are square and B is invertible.

Problem 6 (2.2 #31). Find the inverse of the following matrix, if it exists:

[1	0	-2
-3	1	4
2	-3	4

Problem 7 (2.3 #31-ish). Suppose A is an $n \times n$ matrix with the property that $A\underline{x} = \underline{b}$ has at least one solution for each $\underline{b} \in \mathbb{R}^n$. Explain why $A\underline{x} = \underline{b}$ actually has exactly one solution for each $\underline{b} \in \mathbb{R}^n$.