Math 54: Worksheet \#6

Name: \qquad Date: September 16, 2021
Fall 2021
Problem 1 (True/False). If A is invertible, then the inverse of A^{-1} is A^{T}.

Problem 2 (True/False). Suppose A is an $n \times n$ matrix. If there is an $n \times n$ matrix D such that $A D=I$, then there is also an $n \times n$ matrix C such that $C A=I$.

Problem 3 (True/False). If A and B are $n \times n$ matrices such that $A B$ is invertible, then both A and B are invertible.

Problem 4 (True/False). A 5×5 matrix A whose columns don't span \mathbb{R}^{5} can be invertible.

Problem $5(2.2 \# 17)$. Solve the equation $A B=B C$ for A assuming that all the matrices are square and B is invertible.

Problem $6(2.2 \# 31)$. Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Problem 7 (2.3\#31-ish). Suppose A is an $n \times n$ matrix with the property that $A \underline{x}=\underline{b}$ has at least one solution for each $\underline{b} \in \mathbb{R}^{n}$. Explain why $A \underline{x}=\underline{b}$ actually has exactly one solution for each $\underline{b} \in \mathbb{R}^{n}$.

