Math 54: Worksheet \#6, Solutions

Name: \qquad Date: September 16, 2021
Fall 2021
Problem 1 (True/False). If A is invertible, then the inverse of A^{-1} is A^{T}.
Solution. False. By the definition of A^{-1}, we have that $A A^{-1}=I=A^{-1} A$. Also, the matrix B that is the inverse of A^{-1} is defined to be the matrix that satisfies $A^{-1} B=I=B A^{-1}$. From above, we see that A satisfies these equations, so the inverse of A^{-1} is A itself.

Another way you can see this: if B is the inverse of A^{-1}, then

$$
B=I B=\left(A A^{-1}\right) B=A\left(A^{-1} B\right)=A I=A
$$

Problem 2 (True/False). Suppose A is an $n \times n$ matrix. If there is an $n \times n$ matrix D such that $A D=I$, then there is also an $n \times n$ matrix C such that $C A=I$.

Solution. True. From Theorem 8 in section 2.3 of the textbook (which was split up into a couple theorems in lecture), both of these statements are equivalent to A being invertible. Thus, they are also equivalent to one another.

One could use the following logic for this question: we know that since there is an $n \times n$ matrix D such that $A D=I, A$ must be invertible and $D=A^{-1}$. Then, letting $C=A^{-1}$, we see that $C A=I$.

Problem 3 (True/False). If A and B are $n \times n$ matrices such that $A B$ is invertible, then both A and B are invertible.

Solution. True. We use the above two equivalent conditions to invertibility to prove this: first, since $A B$ is invertible, there exists a matrix $Z=(A B)^{-1}$ such that $(A B) Z=I=Z(A B)$. Then, by the associative law for multiplication, we have that $A(B Z)=I$. Letting $D=B Z=B(A B)^{-1}$, we see that $A D=I$, and thus we must have that A is invertible. Similarly, we have that $(Z A) B=I$. Letting $C=Z A=(A B)^{-1} A$, we have that $C B=I$, and thus we must have that B is invertible.

We can also prove this using different equivalent conditions: for example, since $A B$ is invertible, we know that the equation $(A B) \underline{x}=\underline{b}$ has at least one solution for each \underline{b} in \mathbb{R}^{n}. Then, the equation $A \underline{y}=\underline{b}$ also has a solution for each \underline{b} in \mathbb{R}^{n}, namely $\underline{y}=B \underline{x}$ where \underline{x} is a soluiton to $(A B) \underline{x}=\underline{b}$. Indeed,

$$
A \underline{y}=A(B \underline{x})=(A B) \underline{x}=\underline{b} .
$$

Since the equation $A \underline{y}=\underline{b}$ has a solution for each \underline{b}, we must have that A is invertible.
On the other hand, since $A B$ is invertible, we know that the equation $(A B) \underline{x}=\underline{0}$ has only the trivial solution. Then, the equation $B \underline{x}=\underline{0}$ also only has the trivial solution. Indeed, if $B \underline{x}=\underline{0}$, then

$$
(A B) \underline{x}=A(B \underline{x})=A \underline{0}=\underline{0} .
$$

Thus, we must have $\underline{x}=0$ as $(A B) \underline{x}=\underline{0}$ has only the trivial solution. Since the equation $B \underline{x}=\underline{0}$ only has the trivial solution, we must have that B is invertible.

Problem 4 (True/False). A 5×5 matrix A whose columns don't span \mathbb{R}^{5} can be invertible.
Solution. False. If the columns of A do not span \mathbb{R}^{5}, then there exists a vector \underline{b} such that $A \underline{x}=\underline{b}$ does not have a solution. Thus, A is not invertible.

Equivalently, if the columns of A do not span \mathbb{R}^{5}, then there isn't a pivot in each row of A, meaning that A has less than n pivots. Thus, A is not invertible.

Problem $5(2.2 \# 17)$. Solve the equation $A B=B C$ for A assuming that all the matrices are square and B is invertible.

Solution. Since B is invertible, we can multiply both sides of the equation on the right by B^{-1}, getting that

$$
(A B) B^{-1}=(B C) B^{-1}
$$

Now, notice that

$$
(A B) B^{-1}=A\left(B B^{-1}\right)=A I=A
$$

so we have that $A=B C B^{-1}$.

Problem $6(2.2 \# 31)$. Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Solution. We use the row-reduction algorithm:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
-3 & 1 & 4 & 0 & 1 & 0 \\
2 & -3 & 4 & 0 & 0 & 1
\end{array}\right]} & \longrightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & -3 & 8 & -2 & 0 & 1
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right]\right)
$$

Since $\operatorname{RREF}(A)=I$, we have that A is invertible, and

$$
A^{-1}=\left[\begin{array}{ccc}
8 & 3 & 1 \\
10 & 4 & 1 \\
7 / 2 & 3 / 2 & 1 / 2
\end{array}\right]
$$

Note: The row reductions we used were

- $R_{2} \rightarrow R_{2}+3 R_{1}$ and $R_{3} \rightarrow R_{3}-2 R_{1}$
- $R_{3} \rightarrow R_{3}+3 R_{2}$
- $R_{1} \rightarrow R_{1}+R_{3}$ and $R_{2} \rightarrow R_{2}+R_{3}$
- $R_{3} \rightarrow R_{3} / 2$

Problem 7 (2.3\#31-ish). Suppose A is an $n \times n$ matrix with the property that $A \underline{x}=\underline{b}$ has at least one solution for each $\underline{b} \in \mathbb{R}^{n}$. Explain why $A \underline{x}=\underline{b}$ actually has exactly one solution for each $\underline{b} \in \mathbb{R}^{n}$.

Solution. There are a couple ways to explain this: First, since the equation $A \underline{x}=\underline{b}$ has at least one solution for each $\underline{b} \in \mathbb{R}^{n}$, we must have that A is invertible. Then, since A is invertible, we have that $\underline{x} \mapsto A \underline{x}$ is injective, meaning that the equation $A \underline{x}=\underline{b}$ has at most one solution for each $\underline{b} \in \mathbb{R}^{n}$. Thus, the equation $A \underline{x}=\underline{b}$ actually has exactly one solution for each $\underline{b} \in \mathbb{R}^{n}$.

Another way to observe this is that, once we know that A is invertible, we can solve the equation $A \underline{x}=\underline{b}$ by multiplying by A^{-1} on the left on both sides. This gives use $\underline{x}=A^{-1} \underline{b}$, the unique solution to the equation $A \underline{x}=\underline{b}$.

Finally, we can argue in terms of pivots. Since the equation $A \underline{x}=\underline{b}$ has at least one solution for each $\underline{b} \in \mathbb{R}^{n}$, we know that A must have a pivot in each row. However, since A is square $(n \times n)$, this also means that A has a pivot in each column as it has n pivots in total. Thus, there are no free variables, meaning that the solution to $A \underline{x}=\underline{b}$ is unique.

