Math 54: Worksheet #8

 Name:
 Date:
 September 28, 2021

 Fall 2021

Problem 1 (True/False). For any finite subset S of a vector space V, span(S) is a subspace of V.

Problem 2 (True/False). The integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\} \subset \mathbb{R}$ are a subspace of \mathbb{R} .

Problem 3 (True/False). Col A is the set of all solutions of $A\underline{x} = \underline{b}$.

Problem 4 (True/False). The range of a linear transformation is a vector space.

Problem 5 (4.1 #10). Let *H* be the set of all vectors of the form $\begin{bmatrix} 2t \\ 0 \\ -t \end{bmatrix}$. Show that *H* is a subspace of \mathbb{R}^3 .

Problem 6 (4.1 #33). Given subspaces H and K of a vector space V, the sum of H and K, written as H + K, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is,

 $H + K = \{ \underline{w} : \underline{w} = \underline{u} + \underline{v} \text{ for some } \underline{u} \text{ in } H \text{ and some } \underline{v} \text{ in } K \}$

- (a) Show that H + K is a subspace of V.
- (b) Show that H is a subspace of H + K and K is a subspace of H + K.

Problem 7 (4.2 #10). Determine if the given set, W, is a vector space, or find a specific example to the contrary:

$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a+3b=c \\ b+c+a=d \end{array} \right\}$$

Problem 8 (4.2 #24). Let $A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$ and $\underline{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if \underline{w} is in Col A. Is \underline{w} in Nul A?