Math 54: Worksheet \#9

Name: \qquad Date: September 30, 2021 Fall 2021

Problem 1 (True/False). A linearly independent set in a subspace H is a basis for H.

Problem 2 (True/False). A basis is a linearly independent set that is as large as possible.

Problem 3 (True/False). Suppose \mathcal{B} is a basis of vector space V. The correspondence from \mathbb{R}^{n} to V given by $[\underline{x}]_{\mathcal{B}} \mapsto \underline{x}$ is called the coordinate mapping.

Problem 4 (True/False). A plane in \mathbb{R}^{3} can be isomorphic to \mathbb{R}^{2}.

Problem 5 (4.3\#4). Determine if the following set is a basis for \mathbb{R}^{3}. If it is not, determine if it linearly independent and/or if it spans \mathbb{R}^{3} :

$$
\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
-7 \\
5 \\
4
\end{array}\right]
$$

Problem 6 (4.3\#14). Consider the following matrix and one of its row-echelon forms:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & -3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right], \quad R E F(A)=\left[\begin{array}{ccccc}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$.

Problem $7(4.4 \# 8)$. Find the coordinate vector $[\underline{x}]_{\mathcal{B}}$ of \underline{x} relative to the given bases $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}\right\}$:

$$
\underline{b}_{1}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], \underline{b}_{2}=\left[\begin{array}{l}
2 \\
1 \\
8
\end{array}\right], \underline{b}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \underline{x}=\left[\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right]
$$

Problem 8 (4.4\#29). Use coordinate vectors to test the linear independence of the sets of polynomials:

$$
(1-t)^{2}, t-2 t^{2}+t^{3},(1-t)^{3}
$$

