
Math 54: Worksheet #9, Solutions

Name: Date: September 30, 2021

Fall 2021

Problem 1 (True/False). A linearly independent set in a subspace H is a basis for H.

Solution. False. The linearly independent set must also span H to be a basis for H. For example, let us
suppose H = R3 and the linearly independent set is {e1}. e1 isn’t zero, so it is linearly independent, but it
clearly doesn’t span all of R3.

Problem 2 (True/False). A basis is a linearly independent set that is as large as possible.

Solution. True. First, assume that B = {v1, . . . , vn} is a basis of V . Then, B is linearly independent. Also,
B spans V . Thus, for any vector u in V , we can write u as a linear combination of the vectors in B, meaning
that {v1, . . . , vn, u} is linearly dependent. In words, adding any other vector to the set B will lead to a
linearly independent set. This is what we mean when saying B is “as large as possible”.

Also, if we have a set B = {v1, . . . , vk} that is linearly independent, but not a basis of V . Then, B doesn’t
span V , so there is a vector u that can’t be written as a linear combination of the vectors in B. Then, we
have that the set {v1, . . . , vk, u} is also linearly independent, and it is clearly bigger than B. Thus, a linear
independent set that isn’t a basis can always be “bigger” (by adding in another vector), meaning that the set
is not “as large as possible”.

Problem 3 (True/False). Suppose B is a basis of vector space V . The correspondence from Rn to V given
by [x]B 7→ x is called the coordinate mapping.

Solution. False. This is the inverse of the coordinate mapping. The coordinate mapping takes a vector x in
V and returns the coordinates [xB] in Rn.

Problem 4 (True/False). A plane in R3 can be isomorphic to R2.

Solution. True. This is true for any plane in R3 that goes through the origin. The idea behind it is that
a plane in R3 has dimension 2, which is the same as R2. This means that they will be isomorphic to one
another.

In detail, any plane in R3 that goes through the origin can be written as the span of two linearly
independent vectors v1 and v2. Thus B = {v1, v2} is a basis of the plane in R3. The isomorphism between
the plane and R2 is given by the coordinate mapping x 7→ [x]B.
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Problem 5 (4.3 #4). Determine if the following set is a basis for R3. If it is not, determine if it linearly
independent and/or if it spans R3:  2

−2
1

 ,

 1
−3
2

 ,

−7
5
4


Solution. The easiest way to check this is by forming a matrix A with the above vectors at columns and
row-reducing:  2 1 −7

−2 −3 5
1 2 4

 −→
2 1 −7

0 −2 −2
0 3 15

 −→
2 1 −7

0 1 1
0 1 5

 −→
2 1 −7

0 1 1
0 0 4

 .

Since there is a pivot in each column, the set of vectors is linearly independent. Since there is a pivot in each
row, the set of vectors spans R3. Thus, this set of vectors is a basis for R3.

Note: The row operations we used were

1. R2 → R2 + R1 and R3 → 2R3 −R1

2. R2 → R2/(−2) and R3 → R3/3

3. R3 → R3 −R2

Problem 6 (4.3 #14). Consider the following matrix and one of its row-echelon forms:

A =


1 2 −5 11 −3
2 4 −5 15 2
1 2 0 4 5
3 6 −5 19 −2

 , REF (A) =


1 2 0 4 5
0 0 5 −7 8
0 0 0 0 −9
0 0 0 0 0

 .

Find bases for NulA and ColA.

Solution. First, we notice that RREF (A) has 3 pivots, with the pivot columns being the first, third, and
fifth column. Thus, we know that the first, third, and fifth column of A form a basis of ColA:

basis of ColA :


1
2
1
3

 ,


−5
−5
0
−5

 ,


−3
2
5
−2

 .

To find the basis of NulA, we solve Ax = 0. Notice that A with an augmented column of zeros reduces to
REF (A) with an augmented column of zeros:

1 2 −5 11 −3 0
2 4 −5 15 2 0
1 2 0 4 5 0
3 6 −5 19 −2 0

→


1 2 0 4 5 0
0 0 5 −7 8 0
0 0 0 0 −9 0
0 0 0 0 0 0

 .

We recognize that x2 and x4 are free variables. The third equation −9x5 = 0 leads to x5 = 0. The third
equation 5x3 − 7x4 + 8x5 = 0 leads to x3 = (7/5)x4. The first equation x1 + 2x2 + 4x4 + 5x5 = 0 leads to
x1 = −2x2 − 4x4. Rewriting the solution in parametric vector form, we get that

x =


x1

x2

x3

x4

x5

 =


−2x2 − 4x4

x2

(7/5)x4

x4

0

 = x2


−2
1
0
0
0

 + x4


−4
0

7/5
1
0

 .

The two vectors in parametric vector form are a basis of NulA.
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Problem 7 (4.4 #8). Find the coordinate vector [x]B of x relative to the given bases B = {b1, b2, b3}:

b1 =

1
0
3

 , b2 =

2
1
8

 , b3 =

 1
−1
2

 , x =

 3
−5
4


Solution. We want to find the solution to the equation c1b1 + c2b2 + c3b3 = x. Rewritten as a matrix equation,
we have that 1 2 1

0 1 −1
3 8 2

c1c2
c3

 =

 3
−5
4

 .

We solve via row reduction:1 2 1 3
0 1 −1 −5
3 8 2 4

 −→
1 2 1 3

0 1 −1 −5
0 2 −1 −5

 −→
1 2 1 3

0 1 −1 −5
0 0 1 5

 −→
1 2 0 −2

0 1 0 0
0 0 1 5

 −→
1 0 0 −2

0 1 0 0
0 0 1 5

 .

This gives the solution c1 = 1, c2 = 0 and c3 = 5. Thus, we have that

[x]B =

−2
0
5

 .

Problem 8 (4.4 #29). Use coordinate vectors to test the linear independence of the sets of polynomials:

(1− t)2, t− 2t2 + t3, (1− t)3

Solution. First, we expand each of the polynomials:

(1− t)2 = 1− 2t + t2, and (1− t)3 = (1− 2t + t2)(1− t) = 1− 3t + 3t2 − t3.

These are each polynomials of degree 3 or less, so we consider them in the vector space P3. The standard basis
for this vector space is {1, t, t2, t3}, and in that standard basis the polynomials have the following coordinates:

1
−2
1
0

 ,


0
1
−2
1

 ,


1
−3
3
1

 .

We then test linear independence of these vectors in R4 using row-reduction:
1 0 1
−2 1 −3
1 −2 3
0 1 −1

 −→


1 0 1
0 1 −1
0 −2 2
0 1 −1

 −→


1 0 1
0 1 −1
0 0 0
0 0 0


This does not have a pivot in each column, meaning that the columns of the matrix are linearly dependent.
Since the coordinate vectors are linearly dependent, the original polynomials are also linearly dependent.

You can check that column 3 of A is column 1 minus column 2. The corresponding relatin for the
polynomials is

(1− t)3 = (1− t)2 − (t− 2t2 + t3).
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