## Math 54: Worksheet \#12

Name: $\qquad$ Date: October 12, 2021

Fall 2021
Problem 1 (True/False). The concepts of eigenvectors and eigenvalues only make sense for square matrices.

Problem 2 (True/False). For an $n \times n$ matrix $A, \lambda$ is an eigenvalue of $A$ if and only if $A+\lambda I_{n}$ is not invertible.

Problem 3 (True/False). If $\underline{v}_{1}$ and $\underline{v}_{2}$ are linearly independent eigenvectors of a matrix $A$, then they correspond to distinct eigenvalues.

Problem 4 (True/False). For an $n \times n$ matrix $A, \lambda$ is an eigenvalue of $A$ if and only if $\lambda$ is a root of the characteristic polynomial of $A$

Problem 5 (5.1\#8). Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$ ? If so, find one corresponding eigenvector.

Problem 6 (5.1 \#15). Find a basis for the eigenspace corresponding to $\lambda=3$ for the following matrix:

$$
\left[\begin{array}{ccc}
4 & 2 & 3 \\
-1 & 1 & -3 \\
2 & 4 & 9
\end{array}\right]
$$

Problem 7 (5.2\#12). Find the characteristic polynomial of the following matrix, and then list all the eigenvalues and their multiplicities:

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-3 & 4 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

