
Math 54: Worksheet #12, Solutions

Name: Date: October 12, 2021

Fall 2021

Problem 1 (True/False). The concepts of eigenvectors and eigenvalues only make sense for square matrices.

Solution. True. For λ to be an eigenvalue, there needs to be a nonzero vector v such that Av = λv. If A is
m× n with m 6= n, then Av is in Rm, while λv is in Rn. Therefore, the equality Av = λv doesn’t even make
sense.

Problem 2 (True/False). For an n × n matrix A, λ is an eigenvalue of A if and only if A + λIn is not
invertible.

Solution. False. If A+ λIn is not invertible, then there is a nontrivial solution to (A+ λIn)x = 0, which
means that Ax = −λInx = −λx. This means that −λ is an eigenvalue, not necessarily λ itself.

The correct statement is: λ is an eigenvalue of A if and only if A− λIn is not invertible.

Problem 3 (True/False). If v1 and v2 are linearly independent eigenvectors of a matrix A, then they
correspond to distinct eigenvalues.

Solution. False. As a counterexample, take A = In. Then, every vector v is an eigenvector with eigenvalue
λ = 1. So although you can choose two linearly independent eigenvectors (e.g. e1 and e2), they all corresond
to λ = 1.

It is true that if two eigenvectors correspond to distinct eigenvalues, then the eigenvectors are linearly
independent.

Problem 4 (True/False). For an n× n matrix A, λ is an eigenvalue of A if and only if λ is a root of the
characteristic polynomial of A

Solution. True. We know that λ is an eigenvalue of A if and only if A− λIn is not invertible, which happens
if and only if det(A − λIn) = 0. This is exactly what it means for λ to be a root of the characteristic
polynomial of A, χ(λ) = det(A− λIn).
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Problem 5 (5.1 #8). Is λ = 3 an eigenvalue of

1 2 2
3 −2 1
0 1 1

? If so, find one corresponding eigenvector.

Solution. We look at the equation (A− 3I)x = 0 and see if there is a nontrivial solution. First, notice that

A− 3I =

1 2 2
3 −2 1
0 1 1

− 3

1 0 0
0 1 0
0 0 1

 =

−2 2 2
3 −5 1
0 1 −2

 .
We now solve the equation (A− 3I)x = 0:−2 2 2 0

3 −5 1 0
0 1 −2 0

 −→
1 −1 −1 0

3 −5 1 0
0 1 −2 0

 −→
1 −1 −1 0

0 −2 4 0
0 1 −2 0

 −→
1 −1 −1 0

0 1 −2 0
0 1 −2 0


−→

1 −1 −1 0
0 1 −2 0
0 0 0 0

 −→
1 0 −3 0

0 1 −2 0
0 0 0 0

 .
We see that x3 is a free variable, x2 = 2x3 and x1 = 3x3. This means all solutions are of the form

x =

3x3
2x3
x3

 = x3

3
2
1

 .
For example,

3
2
1

 is an eigenvector corresponding to λ = 3.

Problem 6 (5.1 #15). Find a basis for the eigenspace corresponding to λ = 3 for the following matrix: 4 2 3
−1 1 −3
2 4 9


Solution. We look at the equation (A− 3I)x = 0 and see if there is a nontrivial solution. First, notice that

A− 3I =

 4 2 3
−1 1 −3
2 4 9

− 3

1 0 0
0 1 0
0 0 1

 =

 1 2 3
−1 −2 −3
2 4 6

 .
We now solve the equation (A− 3I)x = 0: 1 2 3 0

−1 −2 −3 0
2 4 6 0

 −→
1 2 3 0

0 0 0 0
0 0 0 0

 .
We see that x2 and x3 are free variables and x1 = −2x2 − 3x3. This means all solutions are of the form

x =

−2x2 − 3x3
x2
x3

 = x2

−2
1
0

+ x3

−3
0
1

 .
Thus, a basis of the eigenspace corresponding to λ = 3 is


−2

1
0

 ,
−3

0
1

.
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Problem 7 (5.2 #12). Find the characteristic polynomial of the following matrix, and then list all the
eigenvalues and their multiplicities: −1 0 1

−3 4 1
0 0 2


Solution. We want to calculate det(A− λIn):

det(A− λIn) = det

−1 0 1
−3 4 1
0 0 2

− λ
1 0 0

0 1 0
0 0 1

 = det

−1− λ 0 1
−3 4− λ 1
0 0 2− λ

 .

We cofactor expand along the last row, getting that

det

−1− λ 0 1
−3 4− λ 1
0 0 2− λ

 = (2− λ) det

([
−1− λ 0
−3 4− λ

])
= (2− λ)((−1− λ)(4− λ)− 0)

= −(λ− 2)(λ+ 1)(λ− 4) = −λ3 + 5λ2 − 2λ− 8.

From the factored version, we see that the roots of the characteristic polynomial are λ1 = 2, λ2 = −1 and
λ3 = 4, each with multiplicity 1. These are the eigenvalues.
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