Math 54: Worksheet \#12, Solutions

Name: \qquad Date: October 12, 2021
Fall 2021

Problem 1 (True/False). The concepts of eigenvectors and eigenvalues only make sense for square matrices. Solution. True. For λ to be an eigenvalue, there needs to be a nonzero vector \underline{v} such that $A \underline{v}=\lambda \underline{v}$. If A is $m \times n$ with $m \neq n$, then $A \underline{v}$ is in \mathbb{R}^{m}, while $\lambda \underline{v}$ is in \mathbb{R}^{n}. Therefore, the equality $A \underline{v}=\lambda \underline{v}$ doesn't even make sense.

Problem 2 (True/False). For an $n \times n$ matrix A, λ is an eigenvalue of A if and only if $A+\lambda I_{n}$ is not invertible.

Solution. False. If $A+\lambda I_{n}$ is not invertible, then there is a nontrivial solution to $\left(A+\lambda I_{n}\right) \underline{x}=\underline{0}$, which means that $A \underline{x}=-\lambda I_{n} \underline{x}=-\lambda \underline{x}$. This means that $-\lambda$ is an eigenvalue, not necessarily λ itself.

The correct statement is: λ is an eigenvalue of A if and only if $A-\lambda I_{n}$ is not invertible.

Problem 3 (True/False). If \underline{v}_{1} and \underline{v}_{2} are linearly independent eigenvectors of a matrix A, then they correspond to distinct eigenvalues.

Solution. False. As a counterexample, take $A=I_{n}$. Then, every vector \underline{v} is an eigenvector with eigenvalue $\lambda=1$. So although you can choose two linearly independent eigenvectors (e.g. \underline{e}_{1} and \underline{e}_{2}), they all corresond to $\lambda=1$.

It is true that if two eigenvectors correspond to distinct eigenvalues, then the eigenvectors are linearly independent.

Problem 4 (True/False). For an $n \times n$ matrix A, λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial of A

Solution. True. We know that λ is an eigenvalue of A if and only if $A-\lambda I_{n}$ is not invertible, which happens if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$. This is exactly what it means for λ to be a root of the characteristic polynomial of $A, \chi(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$.

Problem 5 (5.1\#8). Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$? If so, find one corresponding eigenvector.
Solution. We look at the equation $(A-3 I) \underline{x}=\underline{0}$ and see if there is a nontrivial solution. First, notice that

$$
A-3 I=\left[\begin{array}{ccc}
1 & 2 & 2 \\
3 & -2 & 1 \\
0 & 1 & 1
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 2 & 2 \\
3 & -5 & 1 \\
0 & 1 & -2
\end{array}\right] .
$$

We now solve the equation $(A-3 I) \underline{x}=\underline{0}$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc|c}
-2 & 2 & 2 & 0 \\
3 & -5 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]} & \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
3 & -5 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & -2 & 4 & 0 \\
0 & 1 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]\right)
$$

We see that x_{3} is a free variable, $x_{2}=2 x_{3}$ and $x_{1}=3 x_{3}$. This means all solutions are of the form

$$
\underline{x}=\left[\begin{array}{c}
3 x_{3} \\
2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] .
$$

For example, $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is an eigenvector corresponding to $\lambda=3$.
Problem 6 (5.1 \#15). Find a basis for the eigenspace corresponding to $\lambda=3$ for the following matrix:

$$
\left[\begin{array}{ccc}
4 & 2 & 3 \\
-1 & 1 & -3 \\
2 & 4 & 9
\end{array}\right]
$$

Solution. We look at the equation $(A-3 I) \underline{x}=\underline{0}$ and see if there is a nontrivial solution. First, notice that

$$
A-3 I=\left[\begin{array}{ccc}
4 & 2 & 3 \\
-1 & 1 & -3 \\
2 & 4 & 9
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & -2 & -3 \\
2 & 4 & 6
\end{array}\right] .
$$

We now solve the equation $(A-3 I) \underline{x}=\underline{0}$:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
-1 & -2 & -3 & 0 \\
2 & 4 & 6 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We see that x_{2} and x_{3} are free variables and $x_{1}=-2 x_{2}-3 x_{3}$. This means all solutions are of the form

$$
\underline{x}=\left[\begin{array}{c}
-2 x_{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] .
$$

Thus, a basis of the eigenspace corresponding to $\lambda=3$ is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]\right\}$.

Problem 7 (5.2\#12). Find the characteristic polynomial of the following matrix, and then list all the eigenvalues and their multiplicities:

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-3 & 4 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Solution. We want to calculate $\operatorname{det}\left(A-\lambda I_{n}\right)$:

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-3 & 4 & 1 \\
0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 0 & 1 \\
-3 & 4-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right]\right)
$$

We cofactor expand along the last row, getting that

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 0 & 1 \\
-3 & 4-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right]\right) & =(2-\lambda) \operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
-3 & 4-\lambda
\end{array}\right]\right)=(2-\lambda)((-1-\lambda)(4-\lambda)-0) \\
& =-(\lambda-2)(\lambda+1)(\lambda-4)=-\lambda^{3}+5 \lambda^{2}-2 \lambda-8
\end{aligned}
$$

From the factored version, we see that the roots of the characteristic polynomial are $\lambda_{1}=2, \lambda_{2}=-1$ and $\lambda_{3}=4$, each with multiplicity 1 . These are the eigenvalues.

