## Math 54: Worksheet \#13

Name: $\qquad$ Date: October 14, 2021

Fall 2021

Problem 1 (True/False). An $n \times n$ matrix $A$ has $n$ real eigenvalues (counting multiplicity).

Problem 2 (True/False). Every square matrix $A$ is diagonalizable.

Problem 3 (True/False). If an $n \times n$ matrix $A$ is diagonalizable, then $A$ has $n$ distinct eigenvalues.

Problem 4 (True/False). Requires future knowledge. For an $n \times n \operatorname{matrix} A$, $\operatorname{det} A$ is the product of the eigenvalues of $A$.

Problem 5 (5.2\#16). List the eigenvalues of the following matrix, repeated according to their multiplicities:

$$
\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
8 & -4 & 0 & 0 \\
0 & 7 & 1 & 0 \\
1 & -5 & 2 & 1
\end{array}\right]
$$

Problem 6 (5.3\#6). Consider the matrix

$$
\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & -1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 1 & 4 \\
-1 & 0 & -2
\end{array}\right] .
$$

This matrix is factored in the form $P D P^{-1}$. Use the Diagonalizatoin Theorem to find the eigenvalues of $A$ and a basis for each eigenspace.

Problem 7 (5.3 \#14-ish). Consider the following matrix:

$$
\left[\begin{array}{lll}
4 & 0 & 2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right] .
$$

The eigenvalues for the following matrix are $\lambda=5,4$. Diagonalize the matrix, if possible.

