Math 54: Worksheet \#13, Solutions

Name: \qquad Date: October 14, 2021
Fall 2021
Problem 1 (True/False). An $n \times n$ matrix A has n real eigenvalues (counting multiplicity).
Solution. False. Some matrices don't have any (real) eigenvalues! For example, consider

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Let's find the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right)=\lambda^{2}+1
$$

This has no real roots: $\lambda^{2}+1=0$ leads to $\lambda^{2}=-1$, which has no real solutions.
Note: The above statement is true if you allow complex eigenvalues, as we will in Section 5.5. This is confusing, I know.

Problem 2 (True/False). Every square matrix A is diagonalizable.
Solution. False. We know that a matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. This is not true of every matrix. For example, consider the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] .
$$

It's characteristic polynomails is $\chi(\lambda)=(2-\lambda)^{2}$, so it has the eigenvalue $\lambda=2$ with multiplicity 2 . To find the eigenvectors, we solve $(A-2 \lambda) \underline{x}=\underline{0}$:

$$
\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

We see that x_{1} is free and $x_{2}=0$, so we find the eigenvectors are all of the form $\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]$. These are all linearly dependent.

Problem 3 (True/False). If an $n \times n$ matrix A is diagonalizable, then A has n distinct eigenvalues.
Solution. False. Consider the matrix $I . I$ is already diagonal (so it is diagonalizable with $P=I$), but I only has one eigenvalue $\lambda=1$ with multiplicity n. Thus, it does not have distinct eigenvalues.

Note: the opposite statement is true. If an $n \times n$ matrix A has n disctinct eigenvalues, then it has n linearly independent eigenvectors, so it is diagonalizable.

Problem 4 (True/False). Requires future knowledge. For an $n \times n$ matrix A, $\operatorname{det} A$ is the product of the eigenvalues of A.
Solution. True (if you include complex eigenvalues). This statement is false if you only consider real eigenvalues, as shown in problem 1. The counterexample in problem 1 has no real eigenvalues, but it has determinant equal to 1 .

However, if you include comlex eigenvalues, the statement is true. Over the complex numbers, a n-th degree polynomial can be factored into n linear factors. Thus, when including complex roots, the characteristic polynomial can be factored as follows:

$$
\chi(\lambda)=\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

These λ_{i} are not necessarily distinct. however, the point is that by plugging in $\lambda=0$, we see that $\operatorname{det} A=\lambda_{1} \cdots \lambda_{n}$, the product of the eigenvalues.

Problem 5 (5.2\#16). List the eigenvalues of the following matrix, repeated according to their multiplicities:

$$
\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
8 & -4 & 0 & 0 \\
0 & 7 & 1 & 0 \\
1 & -5 & 2 & 1
\end{array}\right]
$$

Solution. The matrix is triangular, so the eigenvalues are simply the diagonal elements of the matrix: 5, -4, 1, 1.

To see that a triangular matrix has eigenvalues equal to its diagonal entries, let us compute the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cccc}
5-\lambda & 0 & 0 & 0 \\
8 & -4-\lambda & 0 & 0 \\
0 & 7 & 1-\lambda & 0 \\
1 & -5 & 2 & 1-\lambda
\end{array}\right]\right)=(5-\lambda)(-4-\lambda)(1-\lambda)(1-\lambda)
$$

where we used that the determinant of a triangular matrix is the product of its diagonal elements. We see that the roots of the characteristic polynomial are exactly the diagonal elements of the matrix.

Problem 6 (5.3\#6). Consider the matrix

$$
\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & -1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 1 & 4 \\
-1 & 0 & -2
\end{array}\right] .
$$

This matrix is factored in the form $P D P^{-1}$. Use the Diagonalizatoin Theorem to find the eigenvalues of A and a basis for each eigenspace.

Solution. From the Diagonalization Theorem, the diagonal entries of D are the eigenvalues of A, and the corresponding eigenvectors are the columns of P. We see that we have $\lambda=5$ and $\lambda=4$ as the eigenvalues.

For $\lambda=5$, it is listed as the first and second diagonal entry of D, so the corresponding eigenvectors are the first and second columns of $P,\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. These are linearly independent, and form a basis of the eigenspace for $\lambda=5$.

For $\lambda=4$, it is listed as the third diagonal entry of D, so its corresponding eigenvector is the third column of $P,\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$. This is the basis for the eigenspace for $\lambda=4$.

Problem 7 (5.3 \#14-ish). Consider the following matrix:

$$
\left[\begin{array}{lll}
4 & 0 & 2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right] .
$$

The eigenvalues for the following matrix are $\lambda=5,4$. Diagonalize the matrix, if possible.
Solution. To try diagonalize the matrix, we want to find bases for the eigenspaces for both $\lambda=4$ and $\lambda=5$.
For $\lambda=5$, we solve $(A-5 I)=0$. This gives:

$$
\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
2 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We clearly see that $x_{3}=0, x_{2}$ is free, and $x_{1}=0$, so all solutions have the form $\underline{x}=x_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Thus, a basis for the eigenspace is $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

For $\lambda=4$, we solve $(A-4 I)=0$. This gives:

$$
\left[\begin{array}{lll|l}
0 & 0 & 2 & 0 \\
2 & 1 & 4 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
2 & 1 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
2 & 1 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We clearly see that $x_{3}=0, x_{2}$ is free, and $x_{1}=-x_{2} / 2$, so all solutions have the form $\underline{x}=x_{2}\left[\begin{array}{c}-1 / 2 \\ 1 \\ 0\end{array}\right]$. Thus, a basis for the eigenspace is $\left[\begin{array}{c}-1 / 2 \\ 1 \\ 0\end{array}\right]$.

Thus, each eigenspace has dimension 1, which means the sum of the dimensions of the eigenspace is only 2 (not 3, the size of the matrix). Thus, A is not diagonalizable.

