Math 54: Worksheet \#14

Name: \qquad Date: October 19, 2021

Fall 2021

Problem 1 (True/False). If A is similar to B, then A^{2} is similar to B^{2}.

Problem 2 (True/False). If $B=P^{-1} A P$ and \underline{x} is an eigenvector of A corresponding to an eigenvalue λ, then $P \underline{x}$ is an eigenvector of B corresponding to λ.

Problem 3 (True/False). If $A=P C P^{-1}$, then C is the \mathcal{B}-matrix for the transformation $\underline{x} \mapsto A \underline{x}$ when \mathcal{B} is the basis formed by the columns of P.

Problem $4(5.4 \# 4)$. Let $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}\right\}$ be a basis for a vector space V and $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation with the property that

$$
T\left(x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+x_{3} \underline{b}_{3}\right)=\left[\begin{array}{c}
2 x_{1}-4 x_{2}+5 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^{2}.

Problem $5(5.4 \# 6)$. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $p(t)$ into the polynomial $p(t)+t^{2} p(t)$.
a. Find the image of $p(t)=2-t+t^{2}$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.

Problem $6(5.4 \# 16)$. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\underline{x})=A \underline{x}$, where

$$
A=\left[\begin{array}{cc}
2 & -6 \\
-1 & 3
\end{array}\right]
$$

Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.

