Math 54: Worksheet \#14, Solutions

Name: \qquad Date: October 19, 2021
Fall 2021

Problem 1 (True/False). If A is similar to B, then A^{2} is similar to B^{2}.
Solution. True. If A is similar to B, then we can write $A=P B P^{-1}$ for some invertible matrix P. Then, we can write that

$$
A^{2}=\left(P B P^{-1}\right)\left(P B P^{-1}\right)=P B\left(P^{-1} P\right) B P^{-1}=P B(I) B P^{-1}=P B B P^{-1}=P B^{2} P^{-1}
$$

This shows that A^{2} and B^{2} are also similar.

Problem 2 (True/False). If $B=P^{-1} A P$ and \underline{x} is an eigenvector of A corresponding to an eigenvalue λ, then $P \underline{x}$ is an eigenvector of B corresponding to λ.

Solution. False. We know that $A \underline{x}=\lambda \underline{x}$. Let us try to compute $B(P \underline{x})$:

$$
B(P \underline{x})=P^{-1} A P(P \underline{x})=P^{-1} A P^{2} \underline{x} .
$$

Here, we can't use the knowledge that $A \underline{x}=\lambda \underline{x}$ since there is a P^{2} between A and \underline{x}. Thus, there is no reason to believe that $P \underline{x}$ is an eigenvector of B corresponding to λ. You can find a basic counter-example.

In fact, what we would want is that the P in $P^{-1} A P$ cancels with a P^{-1} so that we have A next to \underline{x}. So the correct statement is that $P^{-1} \underline{x}$ is an eigenvector of B corresponding to λ :

$$
B\left(P^{-1} \underline{x}\right)=P^{-1} A P\left(P^{-1} \underline{x}\right)=P^{-1} A \underline{x}=P^{-1}(\lambda \underline{x})=\lambda\left(P^{-1} \underline{x}\right) .
$$

Problem 3 (True/False). If $A=P C P^{-1}$, then C is the \mathcal{B}-matrix for the transformation $\underline{x} \mapsto A \underline{x}$ when \mathcal{B} is the basis formed by the columns of P.

Solution. True. This follows from a theorem in the textbook. I will give a short proof here.
If \mathcal{B} is the basis formed by the columns of P, then P changes coordinates from the \mathcal{B} basis to the standard basis: $\underline{x}=P[\underline{x}]_{\mathcal{B}}$. This also shows that $[\underline{x}]_{\mathcal{B}}=P^{-1} \underline{x}$. Then, for any vector \underline{x}

$$
[A \underline{x}]_{\mathcal{B}}=P^{-1} A \underline{x}=P^{-1}\left(P C P^{-1}\right) \underline{x}=C\left(P^{-1} \underline{x}\right)=C[\underline{x}]_{\mathcal{B}}
$$

Thus, C is exactly the \mathcal{B}-matrix of the transformation.

Problem $4(5.4 \# 4)$. Let $\mathcal{B}=\left\{\underline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}\right\}$ be a basis for a vector space V and $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation with the property that

$$
T\left(x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+x_{3} \underline{b}_{3}\right)=\left[\begin{array}{c}
2 x_{1}-4 x_{2}+5 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^{2}.
Solution. To find the matrix for T relative to \mathcal{B} and the standard basis \mathcal{E} for \mathbb{R}^{2}, we want to find $\left[T\left(\underline{b}_{i}\right)\right]_{\mathcal{E}}=$ $T\left(\underline{b}_{i}\right)$: these form the columns of the matrix we are looking for. We get:

$$
\begin{aligned}
& T\left(\underline{b}_{1}\right)=T\left(1 \cdot \underline{b}_{1}+0 \cdot \underline{b}_{2}+0 \cdot \underline{b}_{3}\right)=\left[\begin{array}{c}
2(1)-4(0)+5(0) \\
-(0)+3(0)
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& T\left(\underline{b}_{2}\right)=T\left(0 \cdot \underline{b}_{1}+1 \cdot \underline{b}_{2}+0 \cdot \underline{b}_{3}\right)=\left[\begin{array}{c}
2(0)-4(1)+5(0) \\
-(1)+3(0)
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-1
\end{array}\right] \\
& T\left(\underline{b}_{3}\right)=T\left(0 \cdot \underline{b}_{1}+0 \cdot \underline{b}_{2}+1 \cdot \underline{b}_{3}\right)=\left[\begin{array}{c}
2(0)-4(0)+5(1) \\
-(0)+3(1)
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right] .
\end{aligned}
$$

Thus, we get that the matrix for T relative to \mathcal{B} and the standard matrix for \mathbb{R}^{2} is:

$$
M=\left[\begin{array}{lll}
2 & -4 & 5 \\
0 & -1 & 3
\end{array}\right]
$$

Problem $5(5.4 \# 6)$. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $p(t)$ into the polynomial $p(t)+t^{2} p(t)$.
a. Find the image of $p(t)=2-t+t^{2}$.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.

Solution. a. The image of $p(t)=2-t+t^{2}$ is

$$
p(t)+t^{2} p(t)=\left(2-t+t^{2}\right)+t^{2}\left(2-t+t^{2}\right)=2-t+3 t^{2}-t^{3}+t^{4}
$$

b. We check that T is a linear transformation: let $p(t)$ and $q(t)$ be two polynomials, and let a and b be two scalars. Then,

$$
\begin{aligned}
T(a p(t)+b q(t)) & =(a p(t)+b q(t))+t^{2}(a p(t)+b q(t))=a\left(p(t)+t^{2} p(t)\right)+b\left(q(t)+t^{2} q(t)\right) \\
& =a T(p(t))+b T(q(t))
\end{aligned}
$$

This shows that it is a linear transformaton.
c. To find the matrix for T relative to $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and $\mathcal{C}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$, we want to find $[T(1)]_{\mathcal{C}}$, $[T(t)]_{\mathcal{C}}$, and $\left.T\left(t^{2}\right)\right]_{\mathcal{C}}$: these form the columns of the matrix we are looking for. First, we find

$$
\begin{aligned}
T(1) & =1+t^{2}(1)=1+t^{2} \\
T(t) & =t+t^{2}(t)=t+t^{3} \\
T\left(t^{2}\right) & =t^{2}+t^{2}\left(t^{2}\right)=t^{2}+t^{4}
\end{aligned}
$$

Next, we find their coordinates:

$$
[T(1)]_{\mathcal{C}}=\left[1+t^{2}\right]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad[T(t)]_{\mathcal{C}}=\left[t+t^{3}\right]_{\mathcal{C}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right], \quad\left[T\left(t^{2}\right)\right]_{\mathcal{C}}=\left[t^{2}+t^{4}\right]_{\mathcal{C}}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right] .
$$

These form the columns of the desired matrix, so we have that the matrix of T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ is:

$$
M=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Problem 6 (5.4 \#16). Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\underline{x})=A \underline{x}$, where

$$
A=\left[\begin{array}{cc}
2 & -6 \\
-1 & 3
\end{array}\right]
$$

Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.
Solution. To find a basis for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal, we have to diagonalize A. First, we find its eigenvalues using the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & -6 \\
-1 & 3-\lambda
\end{array}\right]=(2-\lambda)(3-\lambda)-6=\lambda^{2}-5 \lambda+6-6=\lambda^{2}-5 \lambda=\lambda(\lambda-5) .
$$

Setting this equal to zero, we see that the eigenvalues are $\lambda=0$ and $\lambda=5$.
Now, we want to find eigenvectors for both eigenvalues. For $\lambda=0$, we solve $A \underline{x}=0$:

$$
\left[\begin{array}{cc|c}
2 & -6 & 0 \\
-1 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Here x_{2} is a free variable, and $x_{1}=3 x_{2}$. Thus, all solutions are of the form $\underline{x}=\left[\begin{array}{c}3 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1\end{array}\right]$, so $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=0$.

For $\lambda=5$, we solve $(A-5 I) \underline{x}=0$:

$$
\left[\begin{array}{ll|l}
-3 & -6 & 0 \\
-1 & -2 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Here x_{2} is a free variable, and $x_{1}=-2 x_{2}$. Thus, all solutions are of the form $\underline{x}=\left[\begin{array}{c}-2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, so $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=5$. Thus, we have that $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
0 & 0 \\
0 & 5
\end{array}\right] .
$$

Then, the columns of $P,\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, form a basis \mathcal{B} for \mathbb{R}^{2} where $[T]_{\mathcal{B}}=D$ is diagonal.

