Math 54: Worksheet \#15

Name: \qquad Date: October 21, 2021
Fall 2021
Problem 1 (True/False). Over \mathbb{C}, any $n \times n$ matrix (with real or complex entries) has an eigenvalue.

Problem 2 (True/False). Over \mathbb{C}, any $n \times n$ matrix (with real or complex entries) is diagonalizable.

Problem 3 (True/False). For a real $n \times n$ matrix, if λ is an eigenvalue, then $\bar{\lambda}$ is an eigenvalue.

Problem $4(5.5 \# 4)$. Consider the following matrix (acting on $\left.\mathbb{C}^{2}\right)$:

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]
$$

Find the eigenvalues, and a basis for each eigenspace in \mathbb{C}^{2}. Can you diagonalize A ?

Problem $5(5.5 \# 10)$. Consider the following matrix (acting on \mathbb{C}^{2}):

$$
A=\left[\begin{array}{cc}
-5 & -5 \\
5 & -5
\end{array}\right]
$$

The transformation $\underline{x} \mapsto A \underline{x}$ is the composition of a rotation and a scaling. Give the angle φ of the rotation, where $-\pi<\varphi \leq \pi$, and give the scale factor r.

Problem 6 (5.5\#16). Consider the following matrix (acting on \mathbb{C}^{2}):

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]
$$

Use the information in Exercise 4 to find an invertible matrix P and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=P C P^{-1}$.

