Math 54: Worksheet #16

 Name:
 Date:
 October 26, 2021

 Fall 2021

Problem 1 (True/False). If $W = \operatorname{Col} A$, then $W^{\perp} = \operatorname{Nul} A$.

Problem 2 (True/False). Not every orthogonal set in \mathbb{R}^n is linearly independent.

Problem 3 (True/False). Suppose $\mathcal{U} = \{\underline{u}_1, \dots, \underline{u}_n\}$ is an orthonormal basis of \mathbb{R}^n . Then, for any $\underline{v} \in \mathbb{R}^n$,

$$[\underline{v}]_{\mathcal{U}} = \begin{bmatrix} \underline{v} \cdot \underline{u}_1 \\ \vdots \\ \underline{v} \cdot \underline{u}_n \end{bmatrix}.$$

Problem 4 (True/False). Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear and preserves lengths (i.e., for each $\underline{x} \in \mathbb{R}^n$, $||T(\underline{x})|| = ||\underline{x}||$), then T must be injective.

Problem 5 (6.1 #6). Consider the vectors

$$\underline{w} = \begin{bmatrix} 3\\-1\\-5 \end{bmatrix}, \quad \underline{x} = \begin{bmatrix} 6\\-2\\3 \end{bmatrix}.$$

Compute $\left(\frac{\underline{x} \cdot \underline{w}}{\underline{x} \cdot \underline{x}}\right) \underline{x}$.

Problem 6 (6.1 #29). Let $W = \operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_p\}$. Show that if \underline{x} is orthogonal to each \underline{v}_j , for $1 \leq j \leq p$, then \underline{x} is in W^{\perp} .

Problem 7 (6.2 #10). Consider the following vectors:

$$\underline{u}_1 = \begin{bmatrix} 3\\-3\\0 \end{bmatrix}, \quad \underline{u}_2 = \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \quad \underline{u}_3 = \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \quad \underline{x} = \begin{bmatrix} 5\\-3\\1 \end{bmatrix}.$$

Show that $\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ is an orthogonal basis of \mathbb{R}^3 . Then, express \underline{x} as a linear combinations of the \underline{u} 's.

Problem 8 (6.2 #20). Consider the following vectors:

[-2/3]		$\left\lceil 1/3 \right\rceil$	
1/3	,	2/3	
2/3		0	

Determine if the set of vectors are orthonormal. If the set is only orthogonal, normalize the vectors to produce an orthonormal set.